VALLEY JOIST+DECK www.valleyjoist.com Valley Joist + Deck 3019 Gualt Ave. N Fort Payne, AL 35967 256-845-2330 Valley Joist + Deck 255 Logan Lane Fernley, NV 89408 775-575-7337 #### **SPECIFYING JOISTS** Joists can be specified in one of two ways. The first option is to specify the joists using the "SJI designation". Examples of this are 16K3, 22K5, 28K10, 32LH11, 44LH16, 68DLH19, etc. and they are commonly referred to as "catalog joists". These designations are listed in the SJI Standard Load Capacity Tables for the different Joist Series. When the SJI designation is used, the joist is designed for the (total) load capacity given in the Standard Load Capacity Tables. The loads will be interpolated when the joist span is between the spans listed in the tables. For K-Series Joists, when the span is less than the minimum table span, the design total load will be 550 plf. For LH-Series Joists, when the span is less than the minimum table span, the loads will be determined based on the "SAFE LOAD" using the method described in the preamble to the LH-Series Load Capacity Tables. The span-to-depth ratio (24:1) given in the SJI specifications **cannot** be exceeded. This is shown in the Standard Load Capacity Tables by the cutoff point for the joist lengths and designation. The second option for specifying a joist is to use the design loads. Examples of this are 18K300/160, 30K450/250, 36LH650/250, 72DLH1250/950, etc. These are commonly referred to as "load/load" joists. In this joist designation the last numbers are the Total Load and Live Load in plf, respectively. It is the specifying professional's responsibility to provide a complete joist designation and to calculate and specify all joist loads. #### SPECIFYING CONCENTRATED AND NON-UNIFORM LOADS Whether using K-Series, LH-Series, or Joist Girders, it is important that the specifying professional show all the design loads on the contract drawings. The most effective way of showing these loads is with a load diagram. The specifying professional shall designate a "special" joist in this situation. **These joists are to be labeled "SP" and a load diagram for each SP joist shall be provided on the contract drawings.** Each SP joist's load diagram shall include the location, magnitude, and type of all concentrated, uniform and non-uniform loads. The most common non-uniform load is a (snow) drift load. The specifying professional must clearly indicate on the contract drawings the length of the drift load and the magnitude of the load at each end of the drift. The most effective method for specifying this load is with a load diagram that includes all loads as shown in the figure below. For further information on specifying joists and joist loads refer to Sections 2.2 and 2.3 of the SJI Code of Standard Practice. #### JOIST "ADD-LOAD" AND "BEND-CHECK" Frequently, the specifying professional includes a generic additional load, often referred to as an "Add-Load", to account for miscellaneous mechanical, electrical, or plumbing equipment that are part of the building but cannot be readily located. This load is typically given in the design specifications for the Open Web Steel Joists and Joist Girders. There are many ways this type of load can be specified. To ensure correct interpretation, Valley Joist offers the following suggestions. Suggested Specification: Design all joists for an additional 500 pound load at any panel point. <u>Valley Joist Interpretation:</u> All joists are designed for an additional single 500 pound concentrated load that can be placed at any top or bottom chord panel point. This is also referred to as an "Add-Load". <u>Note:</u> The load must be within 6 inches of a panel point or additional field-installed reinforcing webs are required. <u>Suggested Specification:</u> Design all joists for an additional 500 pound concentrated load anywhere along the top chord. <u>Valley Joist Interpretation:</u> All joists are designed for an additional single 500 pound concentrated load that can be placed at any location along the top chord. Field installed webs are not required should the load be offset more than 6 inches from a top chord panel point. This is commonly referred to as an "Add-Load w/ a Bend Check". <u>Suggested Specification:</u> Design all joists for an additional 500 pound concentrated load anywhere along the top chord and 350 pounds anywhere along the bottom chord. <u>Valley Joist Interpretation:</u> All joists will be designed for an additional single 500 pound concentrated load that can be placed at any location along the top chord and an additional single 350 pound concentrated load that can be placed at any location along the bottom chord. Field installed reinforcing webs are not required should the load be offset more than 6 inches from a top chord panel point. <u>Suggested Specification:</u> Design all joist top chords for an additional 500 pound concentrated load of which 250 pounds may occur at any location. <u>Valley Joist Interpretation:</u> All joists will be designed for an additional single 500 pound concentrated load that can be placed at any top chord panel point. The top chord will than be checked for the affects of local bending between panel points for a 250 pound load; this is commonly referred to as a "Bend-Check" load. The "Bend-Check load is not considered to be additive Field installed reinforcing webs are not required for additional loads of 250 pounds and less that do not occur at panel points. For additional information and detailed examples of specifying loads refer to Section 2.2 and 2.3 of the SJI Code of Standard Practice. #### JOIST SUBSTITUTES Joist substitutes should be specified when the span is 10 feet or less. The Steel Joist Institute K-Series Standard Specifications include three standard joist substitute designations: 2.5K1, 2.5K2, and 2.5K3. Standard Load Capacity Tables are provided for each of these designations. Note that the length of the joist substitutes in these tables does not exceed 10 feet. In addition to the SJI designated joist substitutes, Valley Joist manufactures joist substitutes in depths up to 5 inches. When specifying a 5" deep joist substitute, the specifying professional should designate the joist substitute by depth and design loads in the same manner as a "load/load" joist, i.e., 5K260/150. Contact Valley Joist if the length, depth, or design loads for the joist substitute exceeds the SJI Table values to ensure that a joist substitute can be manufactured for the loads and lengths specific to your project. #### **AXIAL LOADS** Joists may be subject to axial loads from wind and/or seismic loading conditions. For joists spanning over interior beams or Joist Girders, or for opposing Joist Girders at columns, an axial load transfer mechanism provides the best overall structural system and should always be specified. Several recommended details for axial load transfer mechanisms are shown in details on the accompanying pages. The most efficient method of transferring an axial load into or out of the joist is to provide a direct attachment to the joist's top chord using a tie plate, tie rods, or strap angles. A **knife plate** should only be used for transferring axial loads in Joist Girders. Note: When axial loads are transferred through the joist or Joist Girder seat there will be additional material and manufacturing. It is the specifying professional's responsibility to design the connection of the joist's bearing seats to the structure. If the axial load must be transferred through the joist or Joist Girder Bearing seat, the following are recommended limits. | For K-Series Joists |
20 kips | |----------------------|-------------| | For LH-Series Joists |
30 kips | | For Joist Girders |
40 kips | Contact Valley Joist for specific applications. #### **CAMBER** The camber given in the SJI Standard Specifications for K-Series and LH-Series joists, and for Joist Girders is considered to be "standard camber" and is **approximate**. The camber tables given in the SJI specifications can be used as a guide to determine the expected camber for a joist or Joist Girder of a given length. Because camber is approximate, the amount of camber may vary slightly between joists of the same length. Valley Joist manufactures all joists and Joist Girders for the approximate SJI standard camber. Joists and Joist Girders can also be manufactured without camber (zero camber) if clearly specified on the contract drawings. With the exception of composite joists, Valley Joist excludes any special camber in all quotes. It is recommended that camber for joists and Joist Girders be specified as "SJI Standard Camber". Avoid specifying "camber for dead load". When non-composite joists are used in concrete floor slabs special camber may be required to ensure there is not excessive deflection of the joists during placement of the concrete slab. The specifying professional must clearly denote the floor dead load for which the required camber must be calculated. Camber other than the SJI standard is considered "special camber" and may result in additional costs. Contact Valley Joist for information regarding "special camber". #### JOISTS IN SLOPED ROOFS When joists are installed in a sloping roof, sloped bearing seats will be provided depending on the roof slope. When joist top chord extensions are required, special attention must be given to the bearing seat depth to accommodate both manufacturing and erecting the joists. Tables are included in the Accessories and Details Section of the SJI Specifications for the required bearing seat depth for K-Series and LH-Series joist, respectively, for the various roof slopes. #### **JOISTS AND FIRE PROTECTION PIPING** Open web steel joists can be designed and manufactured to allow for the passage of fire protection branch line piping through the web openings. Valley Joist manufactures K- and LH-Series joists so that the joist webs are aligned to allow for a
continuous passage of sprinkler branch lines; however, the joists are not designed around the sprinkler branch line locations. #### **WOOD-NAILER JOISTS (Available from Western Division only)** "Wood-nailer" joists are a hybrid-type joist system that have wood attached to the joist's top chord. The wood is used for attaching sub-purlins between the joists in a "panelized, wood roof system". This process allows an entire panel consisting of joists, nailers, sub-purlins, and deck to be assembled on the ground. The panel is then lifted into position and nailed to the previously erected panel. The wood-nailer will be #2 Douglas Fir-Larch, solid sawn, dimension lumber or, if required, an engineered wood lumber product, i.e. LVL, PSL. The wood-nailer must be specified on the contract drawings. APA rated sheathing must be used for the decking. It is the responsibility of the specifying professional to determine and specify the wood-nailer and the deck sheathing. There are different methods used to attach the wood nailer to the top chord; however, in each case the attachment must be capable of providing lateral stability for the top chord. This requirement is given in SJI Standard Specifications for K- and LH-Series joists. The attachment must also be capable of resisting and transferring any withdrawal forces from net uplift loads. The attachment may also be required to transfer the diaphragm shears or axial forces from the wood-nailer to the joist top chord. Valley Joist's standard attachment is #14 screws spaced at 12 inches on-center staggered, as shown in the "Standard Screw Spacing for Wood Nailer Joists". The screw length will be based on the depth of the wood-nailer. For a 13/4" thick wood-nailer, a 11/2" long screw is used; for 21/2" thick wood-nailer a 2" long screw is used. #### The required screw spacing and screw type must be specified on the contract drawings. Valley Joist can supply the joists either with or without the wood-nailer attached to the top chord based on the project's requirements. If the wood-nailer is not supplied by Valley Joist (field installed), we can provide holes in the joist top chords based on the spacing and screw size requirements given on the contract drawings. Contact Valley Joist for your specific needs. Valley Joist recommends a minimum depth of 18 inches for all wood-nailer joists. The joist bearing seat depth can be adjusted to accommodate the project requirements. When using LH-Series joist it is recommended that the SJI standard seat depth of 5 inches be adhered to. Specifying a wood nailer joist is the same as a joist in a metal deck roof. The specifying professional must show all loads on the contract drawings. Provisions must be made and details provided for the transfer of axial loads. Several suggested details for transferring the axial loads between joists, between Joist Girders, or at column and wall connections are provided in this catalog for consideration by the design professional. Note that when axial loads are transferred through the joist or Joist Girder seats there will be additional material and manufacturing. Because lateral support for the joist top chord is provided when using this panelized erection process, top chord bridging in not needed. Bottom chord bridging (bracing) is bolted to the bottom chord and nailed to the wood sub-purlins. The number and placement of these braces should be in accordance with the SJI specifications and bridging tables for K-Series and LH-Series joists. If net uplift forces are a design consideration, uplift bridging (braces) must be installed near the first bottom chord panel point at each end of the joist as required in the SJI specifications. Joist Substitutes can be used as wood-nailer joists. Special manufacturing is required so that the wood-nailer can be attached to the joist substitute. Α - (A) STANDARD BEARING SEAT DEPTH: $2\frac{1}{2}$ " (64 MM) (1) - (B) STANDARD BEARING SEAT LENGTH: 5" (127 MM) MIN REQ'D BEARING = 2¹/₂" (63 MM) (2) - (C) STANDARD SLOT GAUGE: $3\frac{1}{2}$ " (89 MM) (3) - (D) STANDARD SLOT SIZE \[\frac{9}{6}\text{" x 2 \frac{3}{4}\text{" (3, 4)}} \] \[\frac{9}{6}\text{" x 2" LONG SLOT- AVAILABLE UPON REQUEST} \] #### K - SERIES - (A) STANDARD BEARING SEAT DEPTH: $5" (127 \text{ MM}) \text{ FOR LH-SERIES (1)} \\ 7^{1}_{2}" (190 \text{ MM}) \text{ FOR DLH-SERIES SECTION NO. } 18 25 \text{ (1)}$ - (B) STANDARD BEARING SEAT LENGTH: 6" (152 MM) (2) MIN BEARING REQ'D. - BY SECTION NUMBER = 02 - 06 INCL. 2½" (64 MM) 07 - 17 INCL. 4" (102 MM) 18 - 25 INCL. 6" (152 MM) - (C) STANDARD SLOT GAUGE: 4" (102 MM) 5" (127MM) FOR DLH 18-35 (3) - (D) STANDARD SLOT SIZE $\frac{13}{16}$ " x $1\frac{1}{4}$ " (3, 4) #### B LH - SERIES AND DLH - SERIES - (A) STANDARD BEARING SEAT DEPTH: 7_2^{1} " (191 MM) (1) - (B) STANDARD BEARING SEAT LENGTH: 6" (152 MM) MIN REQ'D BEARING = 4" MIN (102 MM) (2) - (C) STANDARD SLOT GAUGE: 5" (127 MM) (3) - (D) STANDARD SLOT SIZE $\frac{13}{16}$ " x $1\frac{1}{4}$ " (3, 4) #### C JOIST GIRDERS #### BEARING SEAT STANDARDS - (1) MINIMUM BEARING SEAT DEPTH IS BASED ON SJI STANDARD SPECIFICATIONS. - (2) REFERENCE SJI SPECIFICATIONS FOR MINIMUM REQUIRED BEARING LENGTH. - (3) SLOT SIZE AND GAUGE IS VALLEY JOIST MANUFACTURING STANDARD. - (4) WHERE JOISTS ARE BOLTED TO SUPPORTING STRUCTURE A307 BOLTS WILL BE USED. JOISTS OVER 40'-0" AND AS REQUIRED BY OSHA ERECTION REGULATIONS WILL BE BOLTED USING A307 BOLTS. VALLEY JOIST WILL PROVIDE A307 BOLTS FOR JOIST TO GIRDERS ONLY, ALL OTHER REQUIRED BOLTS WILL BE PROVIDED BY OTHERS. VALLEY JOIST WILL PROVIDE OUR STANDARD BOLT SIZE AND GRADE ONLY. - $\frac{1}{2}$ " x1 $\frac{1}{2}$ " FOR K- SERIES AND $\frac{3}{4}$ " x1 $\frac{3}{4}$ " FOR LH-SERIES. SEE GUIDELINES FOR COMPLYING WITH OSHA STEEL ERECTION STANDARD, PARAGRAPH § 1926.757(a)(10) AND § 1926.757 (c)(5). - (1) BRIDGING SIZE, TYPE AND NUMBER OF ROWS TO BE PROVIDED PER SJI SPECIFICATIONS, - (2) VALLEY JOIST STANDARD BRIDGING ANCHOR CLIP (BAC) TYP HORIZ BRIDGING SPLICE TYP. UPLIFT BRIDGING TO WALL (4) C CONCRETE OR MASONRY WALL (3) 2" MAX SPLICE LAP AT ALL HORIZONTAL BRIDGING. (USE ALL DROPS) 2" MAX. (3) - (4) 'ANCHOR' TYPE AND EMBEDMENT TO BE DETERMINED BY ENGINEER OF RECORD. (NOT BY VALLEY JOIST) - (5) HORIZONTAL TERMINATION BRIDGING IS WELDED TO BOLTED BRIDGING CLIP. С 1 BOLTS ## JOIST @ COLUMN DETAILS - (1) SIZE AND LENGTH BY ENGINEER OF RECORD. - (2) MAGNITUDE BY ENGINEER OF RECORD. ***AXIAL LOAD TRANSFERRED THROUGH JOIST SEATS MAY RESULT IN ADDITIONAL COSTS. STABILIZER DO NOT WELD - WELDS SHOWN ABOVE ARE TYPICAL FOR BOTH JOISTS. - STABILIZER PLATES, AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. - (1) SIZE AND LENGTH BY ENGINEER OF RECORD. - (2) MAGNITUDE BY ENGINEER OF RECORD. ***AXIAL LOAD TRANSFERRED THROUGH JOIST SEATS MAY RESULT IN ADDITIONAL COSTS. - WELDS SHOWN ABOVE ARE TYPICAL FOR BOTH JOISTS. - AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. ### GIRDER TO HSS COLUMN DETAILS - (1) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD. - (2) MAGNITUDE PROVIDED BY ENGINEER OF RECORD. - (3) VALLEY JOIST RECOMMENDS USING A STABILIZER PLATE SIZE OF 3/4"x6"x6". - COLUMN BOLTS, STABILIZER PLATES & AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. - WELDS SHOWN ABOVE ARE TYPICAL FOR BOTH JOIST GIRDERS. ### GIRDER TO WIDE FLANGE COLUMN DETAILS - (1) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD. - (2) MAGNITUDE PROVIDED BY ENGINEER OF RECORD. - (3) VALLEY JOIST RECOMMENDS USING A STABILIZER PLATE SIZE OF 3/4"x6"x6". - COLUMN BOLTS, STABILIZER PLATES & AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. ## GIRDER @ MASONRY/CONCRETE WALL DETAILS - (1) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD. - (2) MAGNITUDE PROVIDED BY ENGINEER OF RECORD. - (3) MAGNITUDE OF FORCE TO BE TRANSFERRED THROUGH SEAT PROVIDED BY THE ENGINEER OF RECORD. ***AXIAL LOAD TRANSFERRED THROUGH JOIST GIRDER SEAT MAY RESULT IN ADDITIONAL COSTS. - (4) VALLEY JOIST RECOMMENDS USING A 3/4" x 6" x 6" X 6" STABILIZER PLATE. - COLUMN BOLTS, STABILIZER PLATES & AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. ### GIRDER TO PERIMETER COLUMN DETAILS - (1) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD. - (2) MAGNITUDE PROVIDED BY ENGINEER OF RECORD. - (3) MAGNITUDE OF FORCE TO BE TRANSFERRED THROUGH SEAT PROVIDED BY THE ENGINEER OF RECORD. ***AXIAL LOAD TRANSFERRED THROUGH JOIST GIRDER SEAT MAY RESULT IN ADDITIONAL COSTS. - (4) VALLEY JOIST RECOMMENDS USING A STABILIZER PLATE SIZE OF 3/4"x6"x6". - COLUMN BOLTS, STABILIZER PLATES & AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. - (2) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD, IF REQUIRED. - AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. # JOIST @ COLUMN DETAILS - (1) SIZE AND LENGTH BY ENGINEER OF RECORD. - (2) MAGNITUDE BY ENGINEER OF RECORD. ***AXIAL LOAD TRANSFERRED THROUGH JOIST SEATS MAY RESULT IN ADDITIONAL COSTS. (2A) TIE STRAPS ARE NOT CONSIDERED SUFFICIENT TO TRANSFER AXIAL LOAD ACROSS JOIST TOP CHORDS. - WELDS SHOWN ABOVE ARE TYPICAL FOR BOTH JOISTS. - STABILIZER PLATES, AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. # WOOD NAILER JOISTS ARE AVAILABLE FROM WESTERN DIVISION ONLY # JOIST @ STEEL LEDGER DETAILS "K" OR "LH" SERIES JOIST DRAG STRUT CONNECTION - (1) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD. - (2) MAGNITUDE PROVIDED BY ENGINEER OF RECORD. - COLUMN BOLTS, STABILIZER PLATES & AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. # WOOD NAILER JOISTS ARE AVAILABLE FROM WESTERN DIVISION ONLY В ## JOIST AT TOP OF WALL - (1) SIZE AND LENGTH TO BE PROVIDED BY ENGINEER OF RECORD. - (2) MAGNITUDE BY ENGINEER OF RECORD. ***AXIAL LOAD TRANSFERRED THROUGH JOIST SEATS MAY RESULT IN ADDITIONAL COSTS. - STABILIZER PLATES, AXIAL TRANSFER MECHANISMS ARE NOT PROVIDED BY VALLEY JOIST. # WOOD NAILER JOISTS ARE AVAILABLE FROM WESTERN DIVISION ONLY #### MOMENT CONNECTION DETAILS BELOW ARE SIX SUGGESTED DETAILS FOR A MOMENT RESISTIVE
CONNECTION INVOLVING ROOF JOIST GIRDERS. SIMILAR DETAILS SHOULD BE UTILIZED FOR LH-SERIES JOISTS WITH END MOMENTS. IN ALL CASES, THE BOTTOM CHORD IS TO BE CONNECTED TO THE COLUMN STABILIZER PLATE WHICH IS TO BE SIZED TO CARRY THE REQUIRED LOAD AND TO OBTAIN THE REQUIRED WELD. (USE MINIMUM 6 x 6 x $\frac{3}{4}$ PLATE FOR JOISTS AND JOIST GIRDERS. #### NOTES: - (1) CONNECTION TYPE B, C & F CAN ALSO BE USED FOR FLOOR GIRDER DETAILS. - (2) WHERE A BACKER BAR IS REQUIRED FOR GROOVE WELDS, ADDITIONAL CLEARANCE MUST BE PROVIDED WHEN DETERMINING GIRDER HOLD BACK DIMENSION. - (3) SIMILAR DETAILS WOULD APPLY AT OTHER TYPES OF COLUMS OR AT CONCRETE WALLS. - (4) ADDITIONAL STIFFENER PLATES MAY BE REQUIRED (NOT SHOWN FOR CLARITY.) - (5) IN ALL DETAILS MOMENT PLATE DESIGN AND MATERIAL IS NOT BY BALLEY JOIST. # **CONTENTS** | History | 1 | |---|----| | Policy | | | Membership | | | Steel Joist Institute Publications | 5 | | Introduction to K-Series | 6 | | Introduction to LH- and DLH-Series | 8 | | Introduction to Composite Joist, CJ-Series | 9 | | Introduction to Joist Girders | 10 | | End Anchorage for Uplift | | | Joist Moment of Inertia and Deflection | | | Concentrated Loads at Joist Chords | 15 | | ACCESSORIES AND DETAILS | | | K-Series Bridging Details | 16 | | LH- and DLH-Series Bridging Details | | | Sloped Seat Requirements, K-Series | | | Sloped Seat Requirements, LH- and DLH-Series | | | Bottom Bearing Details | | | Approximate Duct Opening Sizes | 21 | | K-SERIES | | | Section 1. Scope and Definitions | | | Erection Stability and Handlilng | 48 | | Definition of Span - U. S. Customary Units | | | K-Series LRFD Load Table - U. S. Customary Units | | | K-Series ASD Load Table - U. S. Customary Units | | | KCS LRFD Load Table - U. S. Customary Units | | | KCS ASD Load Table - U. S. Customary Units | 63 | | Economy Tables, K-Series Introduction | 65 | | LRFD K-Series Economy Table - U. S. Customary Units | | | ASD K-Series Economy Table - U. S. Customary Units | | | | | | Top Chord Extensions and Extended Ends, K-Series | 75 | | | | # **LH- AND DLH-SERIES** | STANDARD SPECIFICATIONS | | |---|-----| | Section 100. Scope and Definitions | 83 | | 101. Referenced Specifications, Codes and Standards | | | 102. Materials | | | 103. Design and Manufacture | | | 104. Application | 99 | | 105. Erection Stability and Handling | 107 | | Definition of Span - U. S. Customary Units | 110 | | LH-Series LRFD Load Table - U. S. Customary Units | 111 | | LH-Series ASD Load Table - U. S. Customary Units | 115 | | DLH-Series LRFD Load Table - U. S. Customary Units | 119 | | DLH-Series ASD Load Table - U. S. Customary Units | 123 | | Weight Tables for Load/Load LH-Series Joists | 126 | | JOIST GIRDERS | | | STANDARD SPECIFICATIONS | | | Section 1000. Scope and Definitions | 139 | | 1001. Referenced Specifications, Codes and Standards | | | 1002. Materials | 142 | | 1003. Design and Manufacture | 144 | | 1004. Application | 152 | | 1005. Handling and Erection | 154 | | Joist Girder LRFD Weight Tables - U. S. Customary Units | 155 | | Joist Girder LRFD Weight Tables - U. S. Customary Units | 166 | | CODE OF STANDARD PRACTICE | | | FOR STEEL JOISTS AND JOIST GIRDERS | | | | | | Section 1. General. | | | Joists, Joist Girders and Accessories | | | 3. Materials | | | 4. Inspection | | | Estimating Plans and Specifications | | | o. 1 iano ana oposinoansiis | | ## **GLOSSARY** | Glossary | | |----------|--| | 3 | | ### **APPENDICES** | Appendix A - Fire-Resistance Ratings | 209 | |---|-----| | Appendix B - OSHA Steel Erection Standards | | | Bay Length Definitions | 215 | | Part § 1926.751 - Definitions | | | Part § 1926.757 - Open Web Steel Joists | 221 | | Illustration of OSHA Bridging Terminus Points | | The following documents contained in this catalog have been approved by the American National Standards Institute (ANSI): Standard Specification for Open Web Steel Joists, **K-**Series and Load Tables (SJI-K-2010) Standard Specifications for Longspan Steel Joists, LH-Series and Deep Longspan Steel Joists, DLH-Series and Load Tables (SJI-LH/DLH-2010) Standard Specifications for Joist Girders, JG-Series (SJI-JG-2010) ## STEEL JOIST INSTITUTE #### **HISTORY** Formed five years after the first open web steel joist was manufactured, the Institute has worked since 1928 to maintain sound engineering practice throughout our industry. As a non-profit organization of active manufacturers, the Institute cooperates with governmental and business agencies to establish steel joist standards. Continuing research and updating are included in its work. The first joist in 1923 was a Warren truss type, with top and bottom chords of round bars and a web formed from a single continuous bent bar. Various other types were developed, but problems also followed because each manufacturer had their own design and fabrication standards. Architects, engineers and builders found it difficult to compare rated capacities and to use fully the economies of steel joist construction. Members of the industry began to organize the Institute, and in 1928 the first standard specifications were adopted, followed in 1929 by the first load table. The joists covered by these early standards were later identified as open web steel joists, **SJ**-Series. Other landmark adoptions by the Institute include the following: #### 1953 Introduction of Longspan Steel Joists, L-Series. Specifications and a standard load table, covering spans through 96 feet and depths through 48 inches, were jointly approved with the American Institute of Steel Construction. #### 1959 Introduction of the **S**-Series Joists, which replaced the **SJ**-Series Joists. The allowable tensile stress was increased from 18,000 to 20,000 psi, joist depths were expanded through 24 inches, and spans increased through 48 feet. #### 1961 - (a) Introduction of the **J**-Series Joists, which replaced the **S**-Series Joists. The allowable tensile stress was increased from 20,000 psi to 22,000 psi, based on the use of steel with a minimum yield strength of 36,000 psi. - (b) Introduction of the LA-Series Joists, which replaced the L-Series Joists. The LA-Series Joists were designed to a maximum tensile stress of either 20,000 psi or 22,000 psi, depending on the yield strength of the steel. - (c) Introduction of the H-Series Joists, whose design was based on steel with a minimum yield strength of 50,000 psi, and an allowable tensile stress of 30,000 psi. #### 1962 Introduction of the LH-Series Joists, utilizing steel whose minimum yield strength was between 36,000 psi and 50,000 psi and an allowable tensile strength of 22,000 psi to 30,000 psi. #### 1965 Development of a single specification for both the **J**- and **H**-Series Joists by the Steel Joist Institute and the American Institute of Steel Construction. #### 1966 Development and introduction by the SJI and AISC of the LJ-Series Joists, which replaced the LA-Series Joists. Also, the development of a single specification for both the LJ- and the LH-Series Joists, with the use of 36,000 psi minimum yield strength steel for the LJ-Series, and 36,000 psi to 50,000 psi minimum yield strength steel for the LH-Series. #### 1970 Introduction of the **DLJ**- and **DLH**-Series Joists to include depths through 72 inches and spans through 144 feet. #### 1971 Elimination of chord section number 2 and the addition of joist designations 8J3 and 8H3 to the load tables. #### 1972 - (a) Adoption by the SJI and AISC of a single specification for the LJ-, LH-, DLJ-, and DLH-Series Joists. - (b) Adoption by the SJI and AISC of the expanded specifications and load tables for Open Web Steel Joists with increased depths through 30 inches, and spans through 60 feet, plus adding chord section numbers 9, 10, and 11. #### 1978 - (a) Elimination of the J-, LJ-, and DLJ-Series Joists because of the widespread acceptance of high strength steel joists. - (b) Introduction of Joist Girders, complete with specifications and weight tables, in response to the growing need for longer span primary structural members with highly efficient use of steel. #### 1986 Introduction of the K-Series Joists, which replaced the H-Series Joists. The reasons for developing the K-Series Joists were: (1) to achieve greater economies by utilizing the Load Span design concept; (2) to meet the demand for roofs with lighter loads at depths from 18 inches to 30 inches; (3) to offer joists whose load carrying capacities at frequently used spans are those most commonly required; (4) to eliminate the very heavy joists in medium depths for which there was little, if any, demand. #### 1994 - (a) Introduction of the **KCS** Joists as a part of the **K**-Series Specification in response to the need for a joist with a constant moment and constant shear. The **KCS** Joist is an economical alternative joist that may be specified for special loading situations. - (b) Addition of metric nomenclature for all Joist and Joist Girder Series in compliance with government and industry standards. - (c) Addition of revised stability criteria. #### 2002 - (a) Introduction of Joist Substitutes, K-Series. - (b) K-Series, LH- and DLH- Series and Joist Girder Specifications approved as American National Standards (ANSI). - (c) Revisions to K-Series Section 6, LH- and DLH-Series Section 105, and Recommended Code of Standard Practice for conformance to OSHA Steel Erection Standard § 1926.757. - (d) Addition of Standing Seam Roof requirements to the **K**-Series Specification Section 5.8(g) and the **LH** and **DLH**-Series Specification Section 104.9(g). - (e) Addition of Definition for Parallel Chord Sloped Joists **K**-Series Section 5.13 and **LH**-Series Section 104.14. #### 2005 - (a) Major revision of K-Series, LH- and DLH-Series and Joist Girder Specifications to allow the design of joists and
Joist Girders to be either in accordance with Load and Resistance Factor Design (LRFD) or Allowable Strength Design (ASD). - (b) Major revision of **K**-Series and **LH** and **DLH**-Series Load Tables to be in both LRFD and ASD. - (c) Expansion of Joist Girder Weight Tables to spans through 120 feet. - (d) Code of Standard Practice was renamed. #### 2007 Introduction of the **CJ-**Series Composite Joists, complete with specifications, weight tables and bridging tables, in response to the growing need to have a standard design specification for all member companies producing composite steel joists. #### 2010 (a) Expanded Range of Products Most significant is the extension of the DLH-Series joist range from a maximum of 72 inches deep and 144 feet long to a maximum now of 120 inches deep and 240 feet long. In conjunction with the increased range, the standard camber for spans over 100 feet has been reduced and the LH-/DLH-Series Load Tables have been converted from a "Clearspan" to "Span" basis. An alternate "load/load" method of specifying Longspan joists has been introduced. Changes were also made with regard to Joist Substitutes and Top Chord Extensions. - (b) Substantial changes were made to the criteria for the spacing of bridging rows and the design of bridging. The changes make the criteria more cohesive between K-Series and LH-Series joists. - (c) A number of changes were made relative to bearing seat and end anchorage conditions, primarily incremental criteria rather than one standard for LH-/DLH-Series joists due to the broad range. In addition, design responsibilities are better defined and additional options for masonry bearing conditions are permitted. - (d) Several design criteria or checks that were already being performed but had not been shown in the specifications, are now included. These include node shear, girder top chord transverse bending, and weld design criteria. Based on SJI research, new criteria for crimped end angle webs have been applied. - (e) The Code of Standard Practice is updated with more discussion of the options available when specifying joist for non-uniform loads. #### **POLICY** The manufacturers of any standard SJI products shall be required to submit design data for verification of compliance with Steel Joist Institute Specifications, undergo physical design verification tests (on K-Series only), and undergo an initial plant inspection and subsequent biennial in-plant inspections for all products for which they wish to be certified. SJI Member companies complying with the above conditions shall be licensed to publish the appropriate copyrighted SJI Specifications, Load Tables and Weight Tables. #### MEMBERSHIP Membership is open to manufacturers who produce, on a continuing basis, joists of the **K-, LH-, and DLH-**Series, and/or Joist Girders, conforming to the Institute's Specifications and Load Tables. Membership requirements differ as described below. #### APPLICANTS BASED ON K-SERIES JOISTS The Institute's Consulting Engineer checks to see that designs conform to the Institute's Specifications and Load Tables. This comprises an examination of: (1) Complete engineering design details and calculations of all **K**-Series Joists, bridging and accessories for which standards have been adopted; (2) Data obtained from physical tests of a limited number of joists, conducted by an independent laboratory, to verify conclusions from analysis of the applicant's engineering design details and calculations. An initial plant inspection and subsequent biennial inspections are required to ensure that the applicant/member possesses the facilities, equipment and personnel required to properly manufacture the **K**-Series Joists. #### APPLICANTS BASED ON LH- OR DLH-SERIES JOISTS OR JOIST GIRDERS Designs are checked by the Consulting Engineer. Biennial in-plant inspections (but no physical tests) are required. #### RESPONSIBILITY FOR PRODUCT QUALITY The plant inspections are not a guarantee of the quality of any specific joists or Joist Girders; this responsibility lies fully and solely with the individual manufacturer. #### **SERVICES TO NONMEMBERS** The Institute's facilities for checking the design of **K-**, **LH-**, and **DLH-**Series Joists or Joist Girders are available on a cost basis. The Steel Joist Institute does not check joist designs for specific construction projects. Manufacturing to Institute Specifications is the responsibility of the individual manufacturer. #### STEEL JOIST INSTITUTE PUBLICATION Visit the SJI Web Site at <www.steeljoist.org> for a complete listing of SJI publications and a copy of the standard order form. Also, be sure to check the website for upcoming Education opportunities in your area. - A. Catalog of Standard Specifications, Load Tables and Weight Tables and Code of Standard Practice for Steel Joists and Joist Girders - B. Catalog of Standard Specifications for Composite Steel Joists, Weight Tables, Bridging Tables and Code of Standard Practice (**CJ**-Series) - C. The following **TECHNICAL DIGESTS** are also available from the Institute: - No. 3 Structural Design of Steel Joist Roofs to Resist Ponding Loads (2007) - No. 5 Vibration of Steel Joist Concrete Slab Floors (1988) - No. 6 Structural Design of Steel Joist Roofs to Resist Uplift Loads (2011) - No. 8 Welding of Open Web Steel Joists (2008) - No. 9 Handling and Erection of Steel Joists and Joist Girders (2008) - No. 10 Design of Fire Resistive Assemblies (2003) - No. 11 Design of Joist Girder Frames (2007) - No. 12 Evaluation and Modification of Open Web Steel Joists and Joist Girders (2007) - D. 80-Year CD Open Web Steel Joist Construction (1928-2008) - E. Vibration Computer Program (upcoming in 2011) - F. SJI DVD Design of Open Web Steel Joists (2010) - G. SJI Video No. 2 The Safe Erection of Steel Joists and Joist Girders (2001) #### **INTRODUCTION TO K-SERIES** Open Web Steel Joists, **K**-Series, were primarily developed to provide structural support for floors and roofs of buildings. They possess the following advantages and features which have resulted in their wide use and acceptance throughout the United States and other countries. First and foremost, they are economical. For many types of buildings, no other products or methods for supporting floors and roofs can compete with steel joists. The advantages listed in the following paragraphs all contribute to the overall economy of using Open Web Steel Joists. **K-**Series are light in weight – they possess an exceptionally high strength-to-weight ratio in comparison with other building materials. Coupled with their low price per pound, they contribute significantly to lower building costs. An additional economy stemming from their light weight is the fact that the structural materials supporting the joists, such as beams and Joist Girders, columns, and the foundations themselves, can therefore be lighter, thus leading to even greater economies. Open Web Steel Joists represent unitized construction. Upon arrival at the job site, the joists are ready immediately for proper installation. No forming, pouring, curing, or stripping is required. Furthermore, their light weight makes the erection procedure simple and fast. **K**-Series Joists are standardized regarding depths, spans, and load-carrying capacities. There are 63 separate designations in the Load Tables, representing joist depths from 10 inches (254 mm) through 30 inches (762 mm) in 2 inch (51 mm) increments and spans through 60 feet (18,288 mm). Standard **K**-Series Joists have a 2 1/2 inch (64 mm) end bearing depth so that, regardless of the overall joist depths, the tops of the joists lie in the same plane. Seat depths deeper than 2 ½" (64 mm) can also be specified. The open webs in the joists permit the ready passage and concealment of pipes, ducts and electric conduits within the depth of the floor. In high rise buildings this can result in a reduced overall building height, which translates into considerable cost savings. As soon as the joists are erected and bridged, with ends properly attached, a working platform is available for the immediate follow-up of allied trades; this allows field work to progress rapidly and efficiently. In combination with other materials, joists can provide fire resistive assemblies for both floors and roofs of buildings for nearly any hourly rating required. Appendix A, Fire Resistance Ratings, provides detailed information on this subject. There are no restrictions on the types, sizes or heights of buildings in which joists can be used. They can be found in the roof of the neighborhood convenience store as well as in your local Lowe's, Home Depot, discount club, K-Mart, Target or Walmart. Standard K-Series Joists are designed for simple span uniform loading which results in a parabolic moment diagram for chord forces and a linearly sloped shear diagram for web forces. When non-uniform and/or concentrated loads are encountered the shear and moment diagrams required may be shaped quite differently and may not be covered by the shear and moment design envelopes of a standard K-Series Joist. When conditions such as this arise, a KCS-Series (K-Series Constant Shear) joist may be a good option. KCS-Series Joists are designed in accordance with the Standard Specification for K-Series Joists with a few unique advantages. #### **KCS**- Series joist advantages: - 1. Provides a versatile **K**-Series Joist that can be easily specified to support uniform and non-uniform loads plus concentrated loads applied at panel points. - 2. Eliminate many repetitive load diagrams required on contract documents and allow some flexibility of load locations. KCS-Series joist chords are designed for a flat positive moment envelope. The moment capacity is constant at all interior panels. All webs are designed for a vertical shear equal to the specified shear capacity and interior webs will be designed for 100% stress reversal. Both LRFD and ASD **KCS**-Series
joist load tables list the shear and moment capacity of each joist. The selection of a **KCS**-Series Joist requires the specifying professional to calculate the maximum moment and shear imposed and select the appropriate **KCS**- Series Joist. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joists and Joist Girders. #### **INTRODUCTION TO LH - and DLH - SERIES** Longspan and Deep Longspan Steel Joists are relatively light weight shop-manufactured steel trusses. Longspan Steel Joists are used in the direct support of floor or roof slabs or decks between walls, beams, and main structural members. Deep Longspan Steel Joists are used for the direct support of roof slabs or decks between walls, beams, and main structural members. The LH- and DLH-Series have been designed for the purpose of extending the use of joists to spans and loads in excess of those covered by Open Web Steel Joists, K-Series. Longspan Series Joists have been standardized in depths from 18 inches (457 mm) through 48 inches (1219 mm), for spans through 96 feet (29,260 mm). Deep Longspan Series Joists have been standardized in depths from 52 inches (1321 mm) through 120 inches (3048 mm), for spans up through 240 feet (73,152 mm). Longspan and Deep Longspan Steel Joists can be furnished with either under-slung or square ends, with parallel chords or with single or double pitched top chords to provide sufficient slope for roof drainage. Square end joists are primarily intended for bottom chord bearing. Sloped parallel-chord joists shall use span as defined by the length along the slope. The joist designation is determined by its nominal depth at the center of the span and by the chord size designation. The depth of the bearing seat at the ends of underslung **LH**- and **DLH**-Series Longspan Joists has been established at 5 inches (127 mm) for chord section number 2 through 17. A bearing seat depth of 7 1/2 inches (191 mm) has been established for the DLH Series chord section number 18 through 25. All Longspan and Deep Longspan Steel Joists are manufactured with standardized camber as given in Table 103.6-1. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joists and Joist Girders. Top Chord Pitched Two Ways, Square Ends The illustrations above show Longspan and Deep Longspan Steel Joists with modified WARREN type web systems. However, the web systems may be any type, whichever is standard with the manufacturer furnishing the product. #### **INTRODUCTION TO CJ-SERIES** Open Web Composite Steel Joists, **CJ**-Series, were developed to provide structural support for floors and roofs which incorporate an overlying concrete slab while also allowing the steel joist and slab to act together as an integral unit after the concrete has adequately cured. The CJ-Series Joists are capable of supporting larger floor or roof loadings due to the attachment of the concrete slab to the top chord of the composite joist. Shear connection between the concrete slab and steel joist is typically made by the welding of shear studs thru the steel deck to the underlying CJ-Series Composite Steel Joist. **CJ**-Series joists can provide an economical alternative to **K**-, **KCS**-, or **LH**-Series joists when taking into account overall costs. Some potential advantages may include those listed below: - 1. Reductions in overall floor to floor height of the structure. - 2. Maximum span-to-depth ratios of 30 permit the use of shallower joists for any given span. - 3. Efficient composite design makes it possible to span greater distances. This results in larger column spacing, thus increasing the rental value of floor space. - 4. Composite Steel Joists can be more efficient than other series dependent on loading and span due to a potential reduction in the joist weight for any given joist depth. Lighter weight joists translate into potentially lighter weight columns and reduced foundation costs. - 5. Live load deflections are significantly reduced. With the overlying concrete slab locked to the steel joist, the resulting composite action provides a stiffer floor system. - 6. Efficient erection of the **CJ**-Series joist system reduces construction time and permits early occupancy of the building. Wider joist spacing reduces the number of joists to be erected and fireproofed. The composite joist designation is determined by its nominal depth, the letters "CJ", followed by the total uniform composite load, uniform composite live load, and finally the uniform composite dead load. Composite Steel Joists are furnished with parallel chords with either under-slung or square ends and act as pinned-pinned members. For specifications, load tables, and additional information to determine if CJ-Series may be suitable for your project, please refer to the latest edition of the Steel Joist Institute Standard Specifications for Composite Steel Joists. #### INTRODUCTION TO JOIST GIRDERS Joist Girders are open web steel trusses used as primary framing members. They are designed as simple spans supporting equally spaced concentrated loads for a floor or roof system. These concentrated loads are considered to act at the panel points of the Joist Girders. Joist Girders have been designed to allow for a growing need for longer span primary members, coupled with a need for more efficient steel usage. These members have been standardized in the LRFD and ASD Weight Tables for depths from 20 inches (508 mm) to 120 inches (3048 mm), and spans to 120 feet (36,576 mm). Standardized camber is as shown in Table 1003.6-1 of the Specifications. Joist Girders are furnished with underslung ends and bottom chord extensions. The standard depth at the bearing ends has been established at 7 1/2 inches (191 mm) for all Joist Girders. Joist Girders are usually attached to the columns by bolting with two 3/4 inch diameter (19 mm) A325 bolts. A loose connection of the bottom chord to the column or other support is recommended during erection in order to stabilize the bottom chord laterally and to help brace the Joist Girder against possible overturning. A vertical stabilizer plate shall be provided on each column for the bottom chord of the Joist Girder. The stabilizer plate shall be furnished by other than the joist manufacturer. "CAUTION": If a rigid connection of the bottom chord is to be made to the column or other support, it shall be made only after the application of the dead loads. The Joist Girder is then no longer simply supported and the system must be investigated for continuous frame action by the specifying professional*. Bearing details of joists on perimeter Joist Girders, or interior Joist Girders with unbalanced loads, should be designed such that the joist reactions pass through the centroid of the Joist Girder. The Weight Tables list the approximate weight in pounds per linear foot (kilograms per meter) for a Joist Girder supporting the concentrated panel point loads shown. Please note that the weight of the Joist Girder must be included in the panel point load (See Code of Standard Practice for Steel Joists and Joist Girders, Section 2.3 for examples). For calculating the approximate deflection or checking for ponding, the following formulas in U. S. Customary Units and Metric Units may be used in determining the approximate moment of inertia of a Joist Girder. $I_{JG} = 0.027$ NPLd: where N = number of joist spaces; P = Total panel point load in kips (unfactored); L = Joist Girder length in feet; and d = effective depth of the Joist Girder in inches, or, $I_{JG} = 0.3296$ NPLd: where N = number of joist spaces; P = Total panel point load in kiloNewtons (unfactored); L = Joist Girder length in millimeters and d = effective depth of the Joist Girder in millimeters. The Joist Girder manufacturer should be contacted when a more exact Joist Girder moment of inertia must be known. * For further reference, refer to Steel Joist Institute Technical Digest Number 11, "Design of Joist Girder Frames". ### END ANCHORAGE FOR UPLIFT For wind uplift conditions it is the responsibility of the **specifying professional** to specify the wind uplift forces and the attachment of the joist or Joist Girder seat to the supporting element. It is the responsibility of the joist manufacturer to design the joist seat for the specified uplift. See Section 6.1(b) of the SJI Code of Standard Practice. #### Welded Anchorage The strength of the joist bearing seat for an uplift loading combination is a function of both the joist seat thickness and length of the end anchorage welds. The minimum end anchorage welds from the SJI Specifications may not develop the full capacity of the joist seat assembly for the specified uplift resistance. Where appropriate, a longer end anchorage weld length aids the joist manufacturer in providing an economical design of the joist bearing seat. The joist manufacturer will provide a seat of sufficient thickness and strength to resist the specified uplift end reaction. To aid in the design and efficiency of the joist bearing seat, it is suggested that the minimum weld lengths of the Specification be increased by one inch whenever there is a net uplift load case, and there is sufficient bearing length to place the longer weld. For a **K**-Series joist, the minimum weld size and length is (2) 1/8" x 2" long, and the minimum required bearing length (on steel) is 2-1/2". Where uplift is present and the bearing length is at least 3", specifying a one inch longer anchorage weld, (2) 1/8" x 3", will allow the joist manufacturer to engage more of the seat length for uplift resistance and provide a more economical seat design. For an **LH/DLH**-Series joist, SJI recommends the same as **K**-Series, to increase the weld length by 1". The minimum bearing lengths for **LH/DLH**- joists are such that there should be sufficient bearing length for the longer weld.
Table 1 below demonstrates these suggestions. TABLE 1 | JOIST SERIES and | MINIMUM | SUGGESTED INCREASED | |----------------------|----------------|---------------------| | SECTION NUMBER | FILLET WELD | WELD LENGTH | | K-Series | (2) 1/8" x 2" | (2) 1/8" x 3" * | | LH-Series, 02-06 | (2) 3/16" x 2" | (2) 3/16" x 3" | | LH/DLH-Series, 07-17 | (2) 1/4" x 2" | (2) 1/4" x 3" | | DLH-Series, 18-25 | (2) 1/4" x 4" | | ^{*} The minimum bearing length on steel for K-Series joists is 2 1/2", so weld length should be increased only where bearing length is available. #### **Bolted Anchorage** Typically, joists and Joist Girders with bolted end anchorage also require a final connection by welding in order to provide lateral stability to the supporting member. However, only the bolts are relied on to provide uplift anchorage. The bolt type and diameter designated by the **specifying professional** shall provide sufficient tensile strength to resist the specified uplift end reaction. Higher strength bolts than the minimums required by the SJI Specification may be required. If the bearing seats are detailed for a bolted connection, bolts shall be installed. If the bolts are not installed, an equivalent welded connection may be permitted by the **specifying professional**, provided the weld is deposited in the slot on the side farthest from the edge of the seat. Additional weld required to meet that specified for the welded connection shall be placed at a location on the seat away from the outer edge of the slot as shown in Figure 1. Figure 1 For additional information on uplift, see SJI Technical Digest 6. ## **JOIST MOMENT OF INERTIA AND DEFLECTION** The moment of inertia of **K**-Series and **LH/DLH**- series joists in the load table can be estimated using the following equations: $I_J = 26.767$ (W) (L³) (10⁻⁶) ASD, US Customary Units with W in plf and L = Span – 0.33 in feet $I_J = 2.6953$ (W) (L³) (10⁻⁵) ASD, Metric Units with W in kN/m and L = Span -102 in mm The equations shown above provide an approximate "gross" moment of inertia, not including the effects of shear deformation. An open web steel joist can be expected to have approximately 15 percent more deformation than a solid web member. When a conventional beam formula is used to calculate joist deflection, a factor of 1.15 should be applied to account for the web shear deformation. #### Example: #### Find the Inertia for a 24K7 @ 40'-0": SJI tables 253 / 148 I_J = 26.767 (W) (L³) (10⁻⁶) where W = RED figure in the Load Table and L = (Span - 0.33) in feet. $I_J = 26.767(148) (40 - 0.33)^3 (10^{-6}) = 247 \text{ in}^4$ #### **Compute Joist Deflection:** Increase deflection 15% to account for shear deformation in webs. (1.15)(5WL⁴/384EI) $(1.15)(5)(148/12)[(40 - 0.33) \times 12)]^4 I[(384)(29 \times 10^{-6})(247)] = 1.32$ " Verify the RED number represents the joist loading that produces L/360 deflection $L/360 = (40 - 0.33) \times 12/360 = 1.32$ " The 15 percent approximation also applies to the deflection equations when using the Joist Girder moment of Inertia equations. For a Load/Load **LH-**Series joist type, the Weight Table includes an estimated moment of inertia value, so an equation is not needed for approximation. ## CONCENTRATED LOADS AT JOIST CHORDS ## TYPICAL JOIST REINFORCEMENT AT CONCENTRATED LOADS For nominal concentrated loads between panel points, which have been accounted for in the specified uniform design loads, a "strut" to transfer the load to a panel point on the opposite chord shall not be required, provided the sum of the concentrated loads within a chord panel does not exceed 100 pounds and the attachments are concentric to the chord. Although standard **K-**Series, including **KCS**-Series, and standard **LH-**Series joists are designed specifically to support uniformly distributed loads applied to the top chord, research conducted by the Steel Joist Institute, using second-order inelastic analysis, has demonstrated that the localized accumulation of uniform design loads of up to 100 pounds within any top or bottom chord panel has a negligible effect on the overall performance of the joist, provided that the load is applied to both chord angles in a manner which does not induce torsion on the chords. Concentrated loads in excess of 100 pounds or which do not meet the criteria outlined above must be applied at joist panel points or field strut members must be utilized as shown in the detail above. Joist manufacturers can provide a specially designed joist with the capability to take point loads without the added members if this requirement and the exact location and magnitude of the loads are shown on the contract drawings. Also, the manufacturer can consider the worst case for both the shear and bending moment for a traveling load with no specific location. When a traveling load is specified, the contract drawings should indicate whether the load is to be applied at the top or bottom chord, and at any panel point, or at any point with the local bending effects considered. For additional information see SJI Code of Standard Practice, Section 2.3 – Specifying Design Loads. #### **K-SERIES BRIDGING DETAILS** **NOTE**: DO NOT WELD BRIDGING TO JOIST WEB MEMBERS. DO NOT HANG ANY MECHANICAL, ELECTRICAL, ETC. FROM BRIDGING. ## WELDED CROSS BRIDGING SEE SJI SPECIFICATIONS HORIZONTAL BRIDGING SHALL BE USED IN SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST WALL. #### BOLTED CROSS BRIDGING SEE SJI SPECIFICATIONS (a) HORIZONTAL BRIDGING UNITS SHALL BE USED IN THE SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST THE WALL. (b) FOR REQUIRED BOLT SIZE REFER TO BRIDGING TABLE. NOTE: CLIP CONFIGURATION MAY VARY FROM THAT SHOWN. #### **LH- AND DLH-SERIES BRIDGING DETAILS** #### HORIZONTAL BRIDGING SEE SJI SPECIFICATIONS NOTE: DO NOT WELD BRIDGING TO WEB MEMBERS. DO NOT HANG $\underline{\mathsf{ANY}}$ MECHANICAL, ELECTRICAL, ETC. FROM BRIDGING. ## WELDED CROSS BRIDGING SEE SJI SPECIFICATIONS HORIZONTAL BRIDGING SHALL BE USED IN SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST WALL. ## BOLTED CROSS BRIDGING SEE SJI SPECIFICATIONS (a) HORIZONTAL BRIDGING UNITS SHALL BE USED IN THE SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST THE WALL. (b) FOR REQUIRED BOLT SIZE REFER TO BRIDGING TABLE. NOTE: CLIP CONFIGURATION MAY VARY FROM THAT SHOWN. ## SLOPED SEAT REQUIRMENTS FOR SLOPES 3/8":12 AND GREATER K-SERIES OPEN WEB STEEL JOISTS #### Notes: - (1) Depths shown are the minimum required for manufacturing of sloped seats. Depths may vary depending on actual bearing conditions. - (2) $d = 1/2 + 2.5/\cos\theta + 4\tan\theta$ (Rounded up to the nearest 1/2".) - (3) Clearance must be checked at outer edge of support. Increase bearing depths as required to allow passage of 2 1/2" deep extension. - (4) If extension depth greater than 2 1/2" is required, increase bearing depths accordingly. - (5) If slope is 1/4: 12 or less, sloped seats are not required. - (6) Required bearing seat depth is determined at END OF SEAT. - (7) Also refer to SJI Specification 5.3(a) for special considerations of joist end reaction location. ## SLOPED SEAT REQUIRMENTS FOR SLOPES 3/8":12 AND GREATER LH- AND DLH-SERIES OPEN WEB STEEL JOISTS #### Notes: - (1) Depths shown are the minimum required for manufacturing of sloped seats. Depth may vary depending on actual bearing condition. - (2) $d = 1/2 + 5 / \cos \theta + 6 \tan \theta$ - (3) Clearance must be checked at outer edge of support. Increase bearing seat depth as required to allow passage of 5" deep extension. - (4) If extension depth greater than 5" is required, increase bearing depths accordingly. - (5) Add 2 1/2" to seat depth at 18 thru 25 chord section numbers. Consult with joist manufacturer for information when TCXs are present. - (6) If slope is 1/4: 12 or less, sloped seats may not required. - (7) Required bearing seat depth shall be determined at END OF SEAT. - (8) Also refer to SJI Specification 104.4(a) for special considerations of joist end reaction location. #### SQUARE ENDED, BOTTOM BEARING Whenever joists are bottom chord bearing, diagonal cross bridging must be installed from joist to joist at or near the bearing location to provide additional lateral erection stability. Note: Joist configuration and member size may vary ## CANTILEVERED, BOTTOM BEARING SQUARE END The weight of walls, signage, fascia, etc. supported at the end of a cantilever square end must be shown on the contract drawings to be properly considered in the joist design. Note: Joist configuration and member size may vary. ## **APPROXIMATE DUCT OPENING SIZES** | JOIST | ROUND | SQUARE | RECTANGLE | |-----------|------------|-----------------|-----------------| | DEPTH | | | | | 10 INCHES | 5 INCHES | 4 x 4 INCHES | 3 x 7 INCHES | | 12 INCHES | 7 INCHES | 5 x 5 INCHES | 3 X 8 INCHES | | 14 INCHES | 8 INCHES | 6 X 6 INCHES | 5 X 9 INCHES | | 16 INCHES | 8 INCHES | 6 X 6 INCHES | 5 X 9 INCHES | | 18 INCHES | 9 INCHES | 7 X 7 INCHES | 5 X 9 INCHES | | 20 INCHES | 10 INCHES | 8 X 8 INCHES | 6 X 11 INCHES | | 22 INCHES | 10 INCHES | 9 X 9 INCHES | 7 X 11 INCHES | | 24 INCHES | 12 INCHES | 10 X 10 INCHES | 7 X 13 INCHES | | 28 INCHES | 15 INCHES* | 12 X 12 INCHES* | 9 X 18 INCHES* | | 28 INCHES | 16 INCHES* | 13 X 13 INCHES* | 9 X 18 INCHES* | | 30 INCHES | 17 INCHES* | 14 X 14 INCHES* | 10 X 18 INCHES* | SPECIFYING PROFESSIONAL <u>MUST</u> INDICATE ON <u>STRUCTURAL</u> DRAWINGS SIZE AND LOCATION OF ANY DUCT THAT IS TO PASS THRU JOIST. THIS DOES NOT INCLUDE ANY FIREPROOFING ATTACHED TO JOIST. FOR DEEPER LH- AND DLH- SERIES JOISTS, CONSULT MANUFACTURER. ^{*}FOR ROD WEB CONFIGURATION, THESE WILL BE REDUCED. CONSULT MANUFACTURER. ## STANDARD SPECIFICATION ## FOR OPEN WEB STEEL JOISTS, K-SERIES Adopted by the Steel Joist Institute November 4, 1985 Revised to May 18, 2010, Effective December 31, 2010 #### SECTION 1. #### SCOPE AND DEFINITIONS
1.1 SCOPE The Standard Specification for Open Web Steel Joists, K-Series, hereafter referred to as the Specification, covers the design, manufacture, application, and erection stability and handling of Open Web Steel Joists K-Series in buildings or other structures, where other structures are defined as those structures designed, manufactured, and erected in a manner similar to buildings. K-Series joists shall be designed using Allowable Stress Design (ASD) or Load and Resistance Factor Design (LRFD) in accordance with this Specification. Steel joists shall be erected in accordance with the Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Code of Federal Regulations 29CFR Part 1926 Safety Standards for Steel Erection, Section 1926.757 Open Web Steel Joists. The KCS joists; Joist Substitutes, K-Series; and Top Chord Extensions and Extended Ends, K-Series are included as part of this Specification. This Specification includes Sections 1 through 6. #### 1.2 DEFINITION The term "Open Web Steel Joists K-Series", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength has been attained by cold working, suitable for the direct support of floors and roof slabs or deck. The K-Series Joists have been standardized in depths from 10 inches (254 mm) through 30 inches (762 mm), for spans up through 60 feet (18288 mm). The maximum total safe uniformly distributed load-carrying capacity of a K-Series Joist is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. The K-Series standard joist designations are determined by their nominal depth, followed by the letter "K", and then by the chord size designation assigned. The chord size designations range from 01 to 12. Therefore, as a performance based specification, the K-Series standard joist designations listed in the following Standard Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: Standard LRFD Load Table Open Web Steel Joists, **K**-Series – U.S. Customary Units Standard ASD Load Table Open Web Steel Joists, **K**-Series – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables Standard LRFD Load Table Open Web Steel Joists, K-Series – S.I. Units Standard ASD Load Table Open Web Steel Joists, K-Series – S.I. Units Two standard types of **K**-Series Joists are designed and manufactured. These types are underslung (top chord bearing) or square-ended (bottom chord bearing), with parallel chords. A KCS Joist shall be designed in accordance with this Specification based on an envelope of moment and shear capacity, rather than uniform load capacity, to support uniform plus concentrated loads or other non-uniform loads. The KCS Joists have been standardized in depths from 10 inches (254 mm) through 30 inches (762 mm), for spans up through 60 feet (18288 mm). The maximum total safe uniformly distributed load-carrying capacity of a KCS Joist is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. The **KCS** Joists standard designations are determined by their nominal depth, followed by the letters "**KCS**", and then by the chord size designation assigned. The chord size designations range from 1 to 5. Therefore, as a performance based specification, the **KCS** Joists standard designations listed in the following Standard Load Tables shall provide the moment capacity and shear capacity as listed in the appropriate tables: Standard LRFD Load Table for **KCS** Open Web Steel Joists – U.S. Customary Units Standard ASD Load Table for **KCS** Open Web Steel Joists – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables Standard LRFD Load Table for **KCS** Open Web Steel Joists – S.I. Units Standard ASD Load Table for **KCS** Open Web Steel Joists – S.I. Units A Joist Substitute, **K**-Series, shall be designed in accordance with this Specification to support uniform loads when the span is less than 10 feet (3048 mm) where an open web configuration becomes impractical. The Joist Substitutes, **K**-Series have been standardized as 2.5 inch (64 mm) deep sections for spans up through 10'-0" (3048 mm). The maximum total safe uniformly distributed load-carrying capacity of a Joist Substitute is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. The Joist Substitutes, **K**-Series standard designations are determined by their nominal depth, i.e. **2.5**, followed by the letter "**K**" and then by the chord size designation assigned. The chord size designations range from 1 to 3. Therefore, as a performance based specification, the Joist Substitutes, **K**-Series standard designations listed in the following Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: LRFD Simple Span Load Table for 2.5 Inch **K**-Series Joist Substitutes – U.S. Customary Units ASD Simple Span Load Table for 2.5 Inch **K**-Series Joist Substitutes – U.S. Customary Units LRFD Outriggers Load Table for 2.5 Inch **K**–Series Joist Substitutes – U.S. Customary Units ASD Outriggers Load Table for 2.5 Inch **K**–Series Joist Substitutes – U.S. Customary Units And the following Load Tables published electronically at www.steeljoist.org/loadtables LRFD Simple Span Load Table for 64 mm **K**-Series Joist Substitutes – S.I. Units ASD Simple Span Load Table for 64 mm **K**-Series Joist Substitutes – S.I. Units LRFD Outriggers Load Table for 64 mm K-Series Joist Substitutes – S.I. Units ASD Outriggers Load Table for 64 mm K-Series Joist Substitutes – S.I. Units A Top Chord Extension or Extended End, **K**-Series, shall be a joist accessory that shall be designed in accordance with this Specification to support uniform loads when one or both ends of an underslung joist needs to be cantilevered beyond its bearing seat. The Top Chord Extensions and Extended Ends, **K**-Series have been standardized as an "S" Type (top chord angles extended only) and an "R" Type (top chord and bearing seat angles extended), respectively. The maximum total safe uniformly distributed load-carrying capacity of either an "R" or "S" Type extension is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. Standard designations for the "S" Type range from S1 to S12 for spans from 0'-6" to 4'-6" (152 to 1372 mm). Standard designations for the "R" Type range from R1 to R12 for spans from 0'-6" to 6'-0" (152 to 1829 mm). Therefore, as a performance based specification, the "S" Type Top Chord Extensions and "R" Type Extended Ends listed in the following Standard Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: LRFD Top Chord Extension Load Table (S Type) – U.S. Customary Units ASD Top Chord Extension Load Table (S Type) – U.S. Customary Units LRFD Top Chord Extension Load Table (R Type) – U.S. Customary Units ASD Top Chord Extension Load Table (R Type) – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables LRFD Top Chord Extension Load Table (S Type) – S.I. Units ASD Top Chord Extension Load Table (S Type) – S.I. Units LRFD Top Chord Extension Load Table (R Type) – S.I. Units ASD Top Chord Extension Load Table (R Type) – S.I. Units #### 1.3 STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS The design drawings and specifications shall meet the requirements in the Code of Standard Practice for Steel Joists and Joist Girders, except for deviations specifically identified in the design drawings and/or specifications. SECTION 2. # REFERENCED SPECIFICATIONS, CODES AND STANDARDS #### 2.1 REFERENCES American Institute of Steel Construction, Inc. (AISC) ANSI/AISC 360-10 Specification for Structural Steel Buildings American Iron and Steel Institute (AISI) ANSI/AISI S100-2007 North American Specification for Design of Cold-Formed Steel Structural Members ANSI/AISI S100-07/S1-09, Supplement No. 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition ANSI/AISI S100-07/S2-10, Supplement No. 2 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition American Society of Testing and Materials, ASTM International (ASTM) ASTM A6/A6M-09, Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling ASTM A36/A36M-08, Standard Specification for Carbon Structural Steel ASTM A242/242M-04 (2009), Standard Specification for High-Strength Low-Alloy Structural Steel ASTM A307-07b, Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength ASTM A325/325M-09, Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi [830 MPa] Minimum Tensile Strength ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products ASTM A500/A500M-07, Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes ASTM A529/A529M-05, Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality ASTM A572/A572M-07, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel ASTM A588/A588M-05, Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmoshperic Corrosion Resistance ASTM A606/A606M-09, Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance ASTM A992/A992M-06a, Standard Specification for Structural Steel Shapes ASTM A1008/A1008M-09, Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable ASTM
A1011/A1011M-09a, Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength #### American Welding Society (AWS) AWS A5.1/A5.1M-2004, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding AWS A5.5/A5.5M:2006, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.17/A5.17M-97:R2007, Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.18/A5.18M:2005, Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.20/A5.20M:2005, Specification for Carbon Steel Electrodes for Flux Cored Arc Welding AWS A5.23/A5.23M:2007, Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M:2005, Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M:2005, Specification for Low Alloy Steel Electrodes for Flux Cored Arc Welding #### 2.1 OTHER REFERENCES The following are non-ANSI Standards documents and as such, are provided solely as sources of commentary or additional information related to topics in this Specification. American Society of Civil Engineers (ASCE) SEI/ASCE 7-10 Minimum Design Loads for Buildings and Other Structures Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. #### Steel Joist Institute (SJI) SJI-COSP-2010, Code of Standard Practice for Steel Joists and Joist Girders Technical Digest No. 3 (2007), Structural Design of Steel Joist Roofs to Resist Ponding Loads Technical Digest No. 5 (1988), Vibration of Steel Joist-Concrete Slab Floors Technical Digest No. 6 (2011), Structural Design of Steel Joist Roofs to Resist Uplift Loads Technical Digest No. 8 (2008), Welding of Open Web Steel Joists and Joist Girders Technical Digest No. 9 (2008), Handling and Erection of Steel Joists and Joist Girders Technical Digest No. 10 (2003), Design of Fire Resistive Assemblies with Steel Joists Technical Digest No. 11 (2007), Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders Technical Digest No. 12 (2007), Evaluation and Modification of Open-web Steel Joists and Joist Girders Steel Structures Painting Council (SSPC) (2000), Steel Structures Painting Manual, Volume 2, Systems and Specifications, Paint Specification No. 15, Steel Joist Shop Primer, May 1, 1999, Pittsburgh, PA. SECTION 3. #### **MATERIALS** #### 3.1 STEEL The steel used in the manufacture of K-Series Joists shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength Low-Alloy Structural Steel, ASTM A242/A242M. - Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M. - High-Strength Carbon-Manganese Steel of Structural Quality, ASTM A529/A529M. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M. - High-Strength Low-Alloy Structural Steel up to 50 ksi [345 MPa] Minimum Yield Point with Atmospheric Corrosion Resistance, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance, ASTM A606/A606M. - Structural Steel Shapes, ASTM A992/A992M. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra High Strength, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 3.2. #### 3.2 MECHANICAL PROPERTIES Steel used for **K**-Series Joists shall have a minimum yield strength determined in accordance with one of the procedures specified in this section, which is equal to the yield strength* assumed in the design. *The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1 "Yield Point", and in paragraph 13.2 "Yield Strength", of ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, or as specified in paragraph 3.2 of this specification. Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A500/A500M, A529/A529M, A572/A572M, A588/A588M, A992/A992M whichever specification is applicable, on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606/A606M, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specifications for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - a) The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 8 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times the least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. #### 3.3 PAINT The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15. - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. SECTION 4. #### **DESIGN AND MANUFACTURE** #### 4.1 METHOD Joists shall be designed in accordance with this specification as simply-supported, trusses supporting a floor or roof deck so constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates use the American Institute of Steel Construction, Specification for Structural Steel Buildings. - b) For members which are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. #### **Design Basis:** Steel joist designs shall be in accordance with the provisions in this Standard Specification using Load and Resistance Factor Design (LRFD) or Allowable Strength Design (ASD) as specified by the **specifying professional** for the project. #### Loads, Forces and Load Combinations: The loads and forces used for the steel joist design shall be calculated by the **specifying professional** in accordance with the applicable building code and specified and provided on the contract drawings. The load combinations shall be specified by the **specifying professional** on the contract drawings in accordance with the applicable building code or, in the absence of a building code, the load combinations shall be those stipulated in SEI/ASCE 7. For LRFD designs, the load combinations in SEI/ASCE 7, Section 2.3 apply. For ASD designs, the load combinations in SEI/ASCE 7, Section 2.4 apply. #### 4.2 DESIGN AND ALLOWABLE STRESSES #### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, f_u, shall not exceed φF_n where f_u = required stress ksi (MPa) F_n = nominal stress ksi (MPa) ϕ = resistance factor ϕF_n = design stress #### Design Using Allowable Strength Design (ASD) Joists shall have their components so proportioned that the required
stresses, f, shall not exceed F_n/Ω where f = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Ω = safety factor $F_n/Ω$ = allowable stress #### Stresses: For Chords: The calculation of design or allowable stress shall be based on a yield strength, F_y, of the material used in manufacturing equal to 50 ksi (345 MPa). For all other joist elements: The calculation of design or allowable stress shall be based on a yield strength, F_y , of the material used in manufacturing, but shall not be less than 36 ksi (250 MPa) or greater than 50 ksi (345 MPa). Note: Yield strengths greater than 50 ksi shall not be used for the design of any joist members. (a) Tension: $\phi_t = 0.90 \text{ (LRFD)}, \Omega_t = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_v$$ (LRFD) (4.2-1) Allowable Stress = $$0.6F_y$$ (ASD) (4.2-2) (b) Compression: $\phi_c = 0.90$ (LRFD), $\Omega_c = 1.67$ (ASD) Design Stress = $$0.9F_{cr}$$ (LRFD) (4.2-3) Allowable Stress = $$0.6F_{cr}$$ (ASD) (4.2-4) For members with $$\frac{k\ell}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$$ $$F_{cr} = Q \left[0.658^{\left(\frac{QF_y}{F_e} \right)} \right] F_y$$ (4.2-5) For members with $$\frac{k\ell_r}{r} > 4.71\sqrt{E_QF_y}$$ $$F_{cr} = 0.877F_e \qquad (4.2-6)$$ Where: F_e = Elastic buckling stress determined in accordance with Equation 4.2-7 $$F_{e} = \frac{\pi^{2} E}{\left(\frac{k\ell}{r}\right)^{2}}$$ (4.2-7) In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for a compression or tension web member, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). For hot-rolled sections and cold formed angles, Q is the full reduction factor for slender compression members as defined in the AISC *Specification for Structural Steel Buildings* except that when the first primary compression web member is a crimped-end angle member, whether hot-rolled or cold formed: $$Q = [5.25/(w/t)] + t \le 1.0$$ (4.2-8) Where: w = angle leg length, inches t = angle leg thickness, inches or, $$Q = [5.25/(w/t)] + (t/25.4) \le 1.0$$ (4.2-9) Where: w = angle leg length, millimeters t = angle leg thickness, millimeters For all other cold-formed sections the method of calculating the nominal compression strength is given in the AISI, North American Specification for the Design of Cold-Formed Steel Structural Members. #### (c) Bending: $\phi_b = 0.90 \text{ (LRFD)}, \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_n = F_y$ Design Stress = $$\phi_b F_n = 0.9 F_v$$ (LRFD) (4.2-10) Allowable Stress = $$F_n/\Omega_b$$ = 0.6 F_v (ASD) (4.2-11) For web members of solid round cross section: $F_n = 1.6 F_v$ Design Stress = $$\phi_b F_n = 1.45 F_v$$ (LRFD) (4.2-12) Allowable Stress = $$F_p/\Omega_b$$ = 0.95 F_v (ASD) (4.2-13) For bearing plates used in joist seats: $F_n = 1.5 F_y$ Design Stress = $$\phi_b F_n = 1.35 F_y$$ (LRFD) Allowable Stress = $$F_p/\Omega_b$$ = 0.90 F_v (ASD) (4.2-15) (4.2-14) #### (d) Weld Strength: Shear at throat of fillet welds, flare bevel groove welds, partial joint penetration groove welds, and plug/slot welds: Nominal Shear Stress = $$F_{nw} = 0.6F_{exx}$$ (4.2-16) **LRFD**: $\phi_{w} = 0.75$ Design Shear Strength = $$\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A_w$$ (4.2-17) **ASD**: $\Omega_{\rm w} = 2.0$ Allowable Shear Strength = $$R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A_w$$ (4.2-18) Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations F_{exx} = 70 ksi (483 MPa) Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations F_{exx} = 60 ksi (414 MPa) A_w = effective throat area, where: For fillet welds, A_w = effective throat area, (other design methods demonstrated to provide sufficient strength by testing shall be permitted to be used); For flare bevel groove welds, the effective weld area is based on a weld throat width, T, where: $$T mtext{ (inches)} = 0.12D + 0.11 mtext{ (4.2-19)}$$ Where: D = web diameter, inches or, $$T (mm) = 0.12D + 2.8$$ (4.2-20) Where: D = web diameter, mm For plug/slot welds, A_w = cross-sectional area of the hole or slot in the plane of the faying surface provided that the hole or slot meets the requirements of the American Institute of Steel Construction *Specification for Structural Steel Buildings* (and as described in SJI Technical Digest No. 8, "Welding of Open-Web Steel Joists and Joist Girders"). Strength of resistance welds and complete-joint-penetration groove or butt welds in tension or compression (only when the stress is normal to the weld axis) is equal to the base metal strength: $$\phi_t = \phi_c = 0.90 \text{ (LRFD)}$$ $\Omega_t = \Omega_c = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_v$$ (LRFD) (4.2-21) Allowable Stress = $$0.6F_y$$ (ASD) (4.2-22) #### 4.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratios, 1.0 ℓ /r and 1.0 ℓ s /r of members as a whole or any component part shall not exceed the values given in Table 4.3-1, Parts A. The effective slenderness ratio, $k\ell/r$ to be used in calculating the nominal stresses, F_{cr} and F'_{e} , is the largest value as determined from Table 4.3-1, Parts B and C. In compression members when fillers or ties are used, they shall be spaced so that the ℓ_s/r_z ratio of each component does not exceed the governing ℓ/r ratio of the member as a whole. The terms used in Table 4.3-1 are defined as follows: - ℓ = length center-to-center of panel points, except ℓ = 36 inches (914 millimeters) for calculating ℓ/r_y of top chord member, in. (mm) or the appropriate length for a compression or tension web member, in. (mm). - $\ell_{\rm s}$ = maximum length center-to-center between panel point and filler (tie), or between adjacent fillers (ties), in. (mm). - r_x = member radius of gyration in the plane of the joist, in. (mm). - r_y = member radius of gyration out of the plane of the joist, in. (mm). - r_z = least radius of gyration of a member component, in. (mm). Compression web members are those web members subject to compressive axial loads under gravity loading. Tension web members are those web members subject to tension axial loads under gravity loading, and which may be subject to compressive axial loads under alternate loading conditions, such as net uplift. For top chords, the end panel(s) are the panels between the bearing seat and the first primary interior panel point comprised of at least two intersecting web members. ## TABLE 4.3-1 MAXIMUM AND EFFECTIVE SLENDERNESS RATIOS | ı | | Description | | | | | | | |------|---|--|---------------------------|------------------|-------------------|---------------------------------|--|--| | Î | | | kℓ/r _× | $K\ell Ir_y$ | kℓ/r _z | kℓ _s /r _z | | | | | TOP CHORD INTERIOR PANELS | | | | | | | | | | A. The slenderness ratios, 1.0ℓ/r and 1.0ℓ_s/r, of members as a whole or any component part shall not exceed 90. B. The effective slenderness ratio, kℓ/r, to determine F_{cr} where k is: | | | | | | | | | | C. | With fillers or ties Without fillers or ties Single component members For bending, the effective slenderness responses to the second s | 1.0

1.0 | 0.94

0.94 | 1.0
 | 1.0

k is: | | | | | | | 1.0 | | | | | | | Ш | | CHORD END PANELS, ALL BOTTOM C | HORD PANEI | LS | | | | | | | Α. | The slenderness ratios, 1.0 ℓ /r and 1.0 ℓ s component part shall not exceed 120 fo | r Top Chords, | or 240 fo | or Bottom | - | | | | | В. | The effective
slenderness ratio, $k\ell lr$, to | determine F _{cr} | where k i | S: | | | | | | | With fillers or ties Without fillers or ties Single component members | 1.0

1.0 | 0.94

0.94 | 1.0
 | 1.0
 | | | | ı | C. | | | | | | | | | | | | 1.0 | | | | | | | Ш | TENSION WEB MEMBERS | | | | | | | | | | A.
B. | The slenderness ratios, 1.0ℓ /r and 1.0ℓ s component part shall not exceed 240. For end web members subject to compr $k\ell$ /r, to determine F_{cr} where k is: | | | | | | | | | | With fillers or ties Without fillers or ties | 1.0 | 1.0 | 1.0 | 1.0 | | | | 1) / | | 3. Single component members | 0.8 | 8.0 | | | | | | IV | COMPRESSION WEB MEMBERS | | | | | | | | | | A. The slenderness ratios, 1.0 ℓ /r and 1.0 ℓ s/r, of members as a whole or any component part shall not exceed 200. | | | | | | | | | | B. | The effective slenderness ratio, $k\ell Ir$, to ℓ | determine F _{cr} | where k i | S: | | | | | | | With fillers or ties | 1.0 | 1.0 | | 1.0 | | | #### 4.4 MEMBERS #### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than: $$r_{y} \geq \ell_{br} \Bigg/ \Bigg(124 + 0.67 \, d_{j} + 28 \, \frac{d_{j}}{L} \Bigg) \text{ , in.} \tag{4.4-1a}$$ $$r_y \ge \ell_{br} / \left(124 + 0.026 \, d_j + 0.34 \, \frac{d_j}{L} \right), \, mm$$ (4.4-1b) or, $$r_{v} \ge \ell_{br}/170 \tag{4.4-2}$$ Where: d_i is the steel joist depth, in. (mm) L is the design length for the joist, ft. (m) r_v is the out-of-plane radius of gyration of the top chord, in. (mm) ℓ_{br} is the spacing in inches (millimeters) between lines of bridging as specified in Section 5.4(c). The top chord shall be considered as stayed laterally by the floor slab or roof deck when attachments are in accordance with the requirements of Section 5.8(e) of these specifications. The top chord shall be designed for only axial compressive stress when the panel length, ℓ , does not exceed 24 inches (609 mm). When the panel length exceeds 24 inches (609 mm), the top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that: #### For LRFD: at the panel point: $$f_{au} + f_{bu} \le 0.9 F_y \tag{4.4-3}$$ at the mid panel: for, $$\frac{f_{au}}{\phi_c F_{cr}} \ge 0.2$$, $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9} \left[\frac{C_m f_{bu}}{\left[1 - \left(\frac{f_{au}}{\phi_c F'_e} \right) \right] Q \phi_b F_y} \right] \le 1.0$$ (4.4-4) for, $$\frac{f_{au}}{\phi_c F_{cr}} < 0.2$$, $$\left(\frac{f_{au}}{2\phi_{c}F_{cr}}\right) + \left[\frac{C_{m}f_{bu}}{\left[1 - \left(\frac{f_{au}}{\phi_{c}F'_{e}}\right)\right]Q\phi_{b}F_{y}}\right] \le 1.0$$ (4.4-5) $f_{au} = P_u/A = Required compressive stress, ksi (MPa)$ P_u = Required axial strength using LRFD load combinations, kips (N) = M_u/S = Required bending stress at the location under consideration, ksi (MPa) M_u = Required flexural strength using LRFD load combinations, kip-in. (N-mm) = Elastic Section Modulus, in.3 (mm3) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ℓ/r as defined in Section 4.2(b), $C_m = 1 - 0.3 f_{au}/\phi F'_e$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F'_e$ for interior panels F_v = Specified minimum yield strength, ksi (MPa) $$F'_e = \frac{\pi^2 E}{(K \ell / r_x)^2}$$, ksi (MPa) Where ℓ is the panel length, in inches (millimeters), as defined in Section 4.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 4.2(b) A = Area of the top chord, in.² (mm²) #### For ASD: at the panel point: $$f_a + f_b \le 0.6F_y$$ (4.4-6) at the mid panel: for, $$\frac{f_a}{F_a} \ge 0.2$$, $$\frac{f_{a}}{F_{a}} + \frac{8}{9} \left[\frac{C_{m} f_{b}}{1 - \left(\frac{1.67 f_{a}}{F'_{e}} \right) Q F_{b}} \right] \le 1.0$$ (4.4-7) for $$\frac{f_a}{F_a}$$ < 0.2, $$\left(\frac{f_a}{2F_a}\right) + \left[\frac{C_m f_b}{\left[1 - \left(\frac{1.67 f_a}{F'_e}\right)\right] QF_b}\right] \le 1.0$$ (4.4-8) f_a = P/A required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, k-in (N-mm) F_a = Allowable axial compressive stress based on ℓ/r as defined in Section 4.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6F_y, ksi (MPa) $C_m = 1 - 0.50 f_a/F'_e$ for end panels C_m = 1 - 0.67 f_a/F'_e for interior panels The top chord and bottom chord shall be designed such that at each joint: $$f_{\text{vmod}} \le \phi_{\text{v}} f_{\text{n}}$$ (LRFD, $\phi = 1.00$) (4.4-9) $$f_{\text{vmod}} \le f_{\text{n}}/\Omega_{\text{v}}$$ (ASD, $\Omega = 1.50$) (4.4-10) Where: f_n = nominal shear stress = 0.6F_y, ksi (MPa) f_t = axial stress = P/A, ksi (MPa) f_v = shear stress = V/bt, ksi (MPa) f_{vmod} = modified shear stress = $(\frac{1}{2})(f_t^2 + 4f_v^2)^{1/2}$ b = length of vertical part(s) of cross section, in. (mm) t = thickness of vertical part(s) of cross section, in. (mm) It shall not be necessary to design the top chord and bottom chord for the modified shear stress when a round bar web member is continuous through a joint. The minimum required shear Section 4.4(b) (25 percent of the end reaction) shall not be required when evaluating Equation 4.4-9 or 4.4-10. KCS Joist chords shall be designed for a flat positive bending moment envelope where the moment capacity is constant at all interior panels. The top chord end panel(s) is designed for an axial load based on the force in the first tension web resulting from the specified shear. A uniform load of 550 plf (8020 N/m) in ASD or 825 plf (12030 N/m) in LRFD shall be used to check bending in the end panel(s). #### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Due consideration shall be given to the effect of eccentricity. The effect of combined axial compression and bending shall be investigated using the provisions of Section 4.4(a), letting $C_m = 0.4$ when bending due to eccentricity produces reversed curvature. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of $\frac{1}{2}$ of 1.0 percent of the top chord axial force. KCS Joist web forces shall be determined based on a flat shear envelope. All webs shall be designed for a vertical shear equal to the specified shear capacity. In addition, all webs shall be designed for 100 percent stress reversal except for the first tension web which will remain in tension under all simple span gravity loads. #### (c) Joist Extensions Joist extensions are defined as one of three types, top chord extensions (TCX), extended ends, or full depth cantilevers. Design criteria for joist extensions shall be specified using one of the following methods: - (1) A Top chord extension (TCX), extended end, or full depth cantilevered end shall be designed for the load from the Standard Load Tables based on the design length and designation of the specified joist. In the absence of other design information, the joist manufacturer shall design the joist extension for this loading as a default. - (2) A loading diagram shall be provided for the top chord extension, extended end, or full depth cantilevered end. The diagram shall include the magnitude and location of the loads to be supported, as well as the appropriate load combinations. - (3) Joist extensions shall be specified using extension designations found in the Top Chord Extension Load Table (S Type) for TCXs or the Top Chord Extension Load Table (R Type) for extended ends. Any deflection requirements or limits due to the accompanying loads and load combinations on the joist extension shall be provided by the **specifying professional**, regardless of the method used to specify the extension. Unless otherwise specified, the joist manufacturer shall check the extension for the specified deflection limit under uniform live load acting simultaneously on both the joist base span and the extension. The joist manufacturer shall consider the effects of joist extension loading on the base span of the joist. This includes carrying the design bending moment due to the loading on the extension into the top chord end panel(s), and the effect on the overall joist chord and web axial forces. In the case of a K-Series Standard Type 'R' Extended End or 'S' TCX, the design bending moment is defined as the tabulated extension section modulus (S) multiplied by the appropriate allowable (ASD) or design (LRFD) flexural stress. Bracing of joist extensions shall be clearly indicated on the structural drawings. #### 4.5 CONNECTIONS #### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. #### (1) Welded Connections - Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between weld and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 mm) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 mm) in any 1 inch (25 mm) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. - (2) Welded Connections for Crimped-End Angle Web Members The
connection of each end of a crimped angle web member to each side of the chord shall consist of a weld group made of more than a single line of weld. The design weld length shall include, at minimum, an end return of two times the nominal weld size. #### (3) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (See Technical Digest 8 - Welding of Open Web Steel Joists and Joist Girders.) (4) Weld Inspection by Outside Agencies (See Section 5.12 of this specification) The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 4.5(a)(1) above. Ultrasonic, X-Ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. #### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices shall be permitted to occur at any point in chord or web members. Splices shall be designed for the member force, but not less than 50 percent of the member strength. All component parts comprising the cross section of the chord or web member (including reinforcing plates, rods, etc.) at the point of the splice, shall develop an ultimate tensile force of at least 1.2 times the product of the yield strength and the full design area of the chord or web. The "full design area" is the minimum required area such that the required stress will be less than the design (LRFD) or allowable (ASD) stress. #### (c) Eccentricity Members connected at a joint shall have their centroidal axes meet at a point whenever possible. Between joist ends where the eccentricity of a web member is less than 3/4 of the over-all dimension, measured in the plane of the web, of the largest member connected, the additional bending stress from this eccentricity shall be permitted to be neglected in the joist design. Otherwise, due consideration shall be given to the effect of eccentricity. The eccentricity of any web member shall be the perpendicular distance from the centroidal axis of that web member to the point on the centroidal axis of the chord which is vertically above or below the intersection of the centroidal axis of the web member(s) forming the joint. Joist ends shall be proportioned to resist bending produced by eccentricity at the support. #### 4.6 CAMBER Joists shall have approximate camber in accordance with the following: **TABLE 4.6-1** | Top Chore | d Length | Approximate Camber | | | |-----------|------------|--------------------|---------|--| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | | 50'-0" | (15240 mm) | 1" | (25 mm) | | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | The specifying professional shall give consideration to coordinating joist camber with adjacent framing. #### 4.7 VERIFICATION OF DESIGN AND MANUFACTURE #### (a) Design Calculations Companies manufacturing **K**-Series Joists shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. Design data shall be submitted in detail and in the format specified by the Institute. #### (b) Tests of Chord and Web Members Each manufacturer shall, at the time of design review by the Steel Joist Institute, verify by tests that the design, in accordance with Sections 4.1 through 4.5 of this specification, will provide the theoretical strength of critical members. Such tests shall be evaluated considering the actual yield strength of the members of the test joists. Material tests for determining mechanical properties of component members shall be conducted. #### (c) Tests of Joints and Connections Each manufacturer shall, at the time of design review by the Steel Joist Institute, verify by shear tests on representative joints of typical joists that connections will meet the provision of Section 4.5(b). Chord and web members shall be permitted to be reinforced for such tests. #### (d) In-Plant Inspections Each manufacturer shall verify their ability to manufacture **K**-Series Joists through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. #### SECTION 5. #### **APPLICATION** #### 5.1 USAGE This specification shall apply to any type of structure where floors and roofs are to be supported directly by steel joists installed as hereinafter specified. Where joists are used other than on simple spans under uniformly distributed loading as prescribed in Section 4.1, they shall be investigated and modified when necessary to limit the required stresses to those listed in Section 4.2. When a rigid connection of the bottom chord is to be made to a column or other structural support, the joist is then no longer simply supported, and the system shall be investigated for continuous frame action by the **specifying professional**. The magnitude and location of all loads and forces shall be provided on the structural drawings. The **specifying professional** shall design the supporting structure, including the design of columns, connections, and moment plates*. This design shall account for the stresses caused by lateral forces and the stresses due to connecting the bottom chord to the column or other structural support. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the **specifying professional**. The moment plates shall be furnished by other than the joist manufacturer. *For further reference, refer to Steel Joist Institute Technical Digest 11, "Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders." #### **5.2 SPAN** The span of a joist shall not exceed 24 times its depth. #### **5.3 END SUPPORTS** #### (a) Masonry and Concrete A **K-**Series Joist end supported by masonry or concrete shall bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical or lateral forces shall be taken by the **specifying professional** in the design of the steel bearing plate and the masonry or concrete. The ends of **K-**Series Joists shall extend a distance of not less than 4 inches (102 mm) over the masonry or concrete support unless it is deemed necessary to bear less than 4 inches (102 mm) over the support. Special consideration shall then be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. **K-**Series Joists shall be anchored to the steel bearing plate and shall bear a minimum of 2 1/2 inches (64 mm) on the plate. The steel bearing plate shall be located not more than 1/2 inch (13 mm) from the face of the wall, otherwise special consideration shall then be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. When the **specifying professional** requires the joist reaction to occur at or near the centerline of the wall or other support, then a note shall be placed on the contract drawings specifying this requirement and the specified bearing seat depth shall be increased accordingly. If the joist reaction is to occur more than 2 1/2 inches (64 mm) from the face of the wall or other support, the minimum seat depth shall be 2 1/2 inches (64 mm). The steel bearing plate shall not be less than 6 inches (152 mm) wide perpendicular to the length of the joist. The plate is to be designed by the **specifying professional** and shall be furnished by other than the joist manufacturer. #### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the **specifying professional** in the design of the steel support. The ends of **K**-Series Joists shall extend a distance of not less than 2 ½ inches (64 millimeters) over the steel supports. #### 5.4 BRIDGING Top and bottom chord bridging is required and shall consist of one or both of the following types. #### (a) Horizontal Horizontal bridging shall consist of continuous horizontal steel members. The ratio of unbraced length to least radius of gyration, ℓ/r , of the bridging member shall not exceed 300, where ℓ is the distance in inches (mm) between attachments, and r is the least radius of gyration of the bridging member. #### (b) Diagonal Diagonal bridging shall consist of cross-bracing with a ℓ/r ratio of not more than 200, where ℓ is the distance in inches (millimeters) between connections and r is the least radius of gyration of the bracing member. Where cross-bracing members are connected at their point of intersection, the ℓ distance shall be taken as the distance in inches (millimeters) between connections at the point of intersection of the bracing members and the connections to the chord of the joists. #### (c) Quantity and Spacing Bridging shall be properly spaced and anchored to support the decking and the employees prior to the attachment of the deck to the top chord. The maximum spacing of lines of bridging, ℓ_{brmax} shall be the lesser of, $$\ell_{\text{bmax}} = \left(124 + 0.67 \, d_j + 28 \frac{d_j}{L}\right) r_y$$, in. (5.4-1a) $$\ell_{bmax} = \left(124 + 0.026 \,d_j + 0.34 \frac{d_j}{L}\right) r_y, \, mm$$ (5.4-1b) or, $$\ell_{\text{bmax}} = 170 \, \text{r}_{\text{y}} \tag{5.4-2}$$ Where: di is the steel joist depth, in.
(mm) L is the Joist Span length, ft. (m) r_y is the out-of-plane radius of gyration of the top chord, in. (mm) The number of rows of top chord bridging shall not be less than as shown in Bridging Tables 5.4-1 and 5.4-2 and the spacing shall meet the requirements of Equations 5.4-1 and 5.4-2. The number of rows of bottom chord bridging, including bridging required per Section 5.11, shall not be less than the number of top chord rows. Rows of bottom chord bridging are permitted to be spaced independently of rows of top chord bridging. The spacing of rows of bottom chord bridging shall meet the slenderness requirement of Section 4.3 and any specified strength requirements. **TABLE 5.4-1** #### U.S. CUSTOMARY UNITS NUMBER OF ROWS OF TOP CHORD BRIDGING** Refer to the K-Series Load Table and Specification Section 6 for required bolted diagonal bridging. Distances are Joist Span lengths in feet – See "Definition of Span" preceding Load Tables. | Section | Joist | One | Two | Three | Four | |---------|------------|------------|-----------------|-----------------|-----------------| | Number* | Depth | Row | Rows | Rows | Rows | | #1 | All | Up thru 17 | Over 17 thru 26 | Over 26 thru 28 | | | #2 | All | Up thru 21 | Over 21 thru 30 | Over 30 thru 32 | | | #3 | All | Up thru 18 | Over 18 thru 26 | Over 26 thru 40 | | | #4 | All | Up thru 20 | Over 20 thru 30 | Over 30 thru 41 | Over 41 thru 48 | | #5 | 12K to 24K | Up thru 20 | Over 20 thru 30 | Over 30 thru 42 | Over 42 thru 48 | | | 26K | Up thru 28 | Over 28 thru 41 | Over 41 thru 52 | | | #6 | 14K to 24K | Up thru 20 | Over 20 thru 31 | Over 31 thru 42 | Over 42 thru 48 | | | 26K & 28K | UP thru 28 | Over 28 thru 41 | Over 41 thru 54 | Over 54 thru 56 | | #7 | 16K to 24K | Up thru 23 | Over 23 thru 34 | Over 34 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 44 | Over 44 thru 60 | | | #8 | 24K | Up thru 25 | Over 25 thru 39 | Over 39 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 44 | Over 44 thru 60 | | | #9 | 16K to 24K | Up thru 22 | Over 22 thru 34 | Over 34 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 44 | Over 44 thru 60 | | | #10 | 18K to 24K | Up thru 22 | Over 22 thru 38 | Over 38 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 48 | Over 48 thru 60 | | | #11 | 22K | Up thru 24 | Over 24 thru 39 | Over 39 thru 44 | | | | 30K | Up thru 34 | Over 34 thru 49 | Over 49 thru 60 | | | #12 | 24K | Up thru 25 | Over 25 thru 43 | Over 43 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 47 | Over 47 thru 60 | | ^{*}Last digit(s) of joist designation shown in Load Table **See Section 5.11 for additional bridging required for uplift design. **TABLE 5.4-2** ## NUMBER OF ROWS OF TOP CHORD BRIDGING** Refer to the K-Series Load Table and Specification Section 6 for required bolted diagonal bridging. Distances are Joist Span lengths in mm – See "Definition of Span" preceding Load Tables. | Section | Joist | One | Two | Three | Four | |---------|------------|---------------|-----------------------|-----------------------|-----------------------| | Number* | Depth | Row | Rows | Rows | Rows | | #1 | All | Up thru 5182 | Over 5182 thru 7925 | Over 7925 thru 8534 | | | #2 | All | Up thru 6401 | Over 6401 thru 9144 | Over 9144 thru 9754 | | | #3 | All | Up thru 5486 | Over 5486 thru 7925 | Over 7925 thru 12192 | | | #4 | All | Up thru 6096 | Over 6096 thru 9144 | Over 9144 thru 12497 | Over 12497 thru 14630 | | #5 | 12K to 24K | Up thru 6096 | Over 6096 thru 9144 | Over 9144 thru 12802 | Over 12802 thru 14630 | | | 26K | Up thru 8534 | Over 8534 thru 12497 | Over 12497 thru 15850 | | | #6 | 14K to 24K | Up thru 6096 | Over 6096 thru 9449 | Over 9449 thru 12802 | Over 12802 thru 14630 | | | 26K & 28K | Up thru 8534 | Over 8534 thru 12497 | Over 12497 thru 16459 | Over 16459 thru 17069 | | #7 | 16K to 24K | Up thru 7010 | Over 7010 thru 10363 | Over 10363 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 13411 | Over 13411 thru 18288 | | | #8 | 24K | Up thru 7620 | Over 7620 thru 11887 | Over 11887 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 13411 | Over 13411 thru 18288 | | | #9 | 16K to 24K | Up thru 6706 | Over 6706 thru 10363 | Over 10363 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 13411 | Over 13411 thru 18288 | | | #10 | 18K to 24K | Up thru 6706 | Over 6706 thru 11582 | Over 11582 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 14630 | Over 14630 thru 18288 | | | #11 | 22K | Up thru 7315 | Over 7315 thru 11887 | Over 11887 thru 13411 | | | | 30K | Up thru 10363 | Over 10363 thru 14935 | Over 14935 thru 18288 | | | #12 | 24K | Up thru 7620 | Over 7620 thru 13106 | Over 13106 thru 14630 | | | | 26K to 30K | UP thru 8839 | Over 8839 thru 14326 | Over 14326 thru 18288 | | ^{*}Last digit(s) of joist designation shown in Load Table ^{**}See Section 5.11 for additional bridging required for uplift design. #### (d) Sizing of Bridging Horizontal and diagonal bridging shall be capable of resisting the nominal unfactored horizontal compressive force, P_{br} given in Equation 5.4-3. $$P_{br} = 0.0025 \text{ n A}_{t} F_{construction}, \text{ lbs (N)}$$ (5.4-3) Where: n = 8 for horizontal bridging n = 2 for diagonal bridging A_t = cross sectional area of joist top chord, in.² (mm²) F_{construction} = assumed ultimate stress in top chord to resist construction loads $$\mathsf{F}_{\mathsf{construction}} = \left(\frac{\pi^2 \, \mathsf{E}}{\left(\frac{0.9 \, \ell_{\mathsf{bmax}}}{\mathsf{r}_{\mathsf{y}}}\right)^2}\right) \ge 12.2 \, \mathsf{ksi}$$ (5.4-4a) $$F_{construction} = \left(\frac{\pi^2 E}{\left(\frac{0.9 \ell_{brmax}}{r_y}\right)^2}\right) \ge 84.1 MPa$$ (5.4-4b) Where: E = Modulus of Elasticity of steel = 29,000 ksi (200,000 MPa) and $\frac{\ell_{\text{brmax}}}{r_{\text{y}}}$ is determined from Equations 5.4-1a, 5.4-1b or 5.4-2 The bridging nominal unfactored horizontal compressive forces, P_{br}, are summarized in Table 5.4-3. **TABLE 5.4-3** | *Section
Number | Horizontal | | Diagonal | | | |---|-----------------------|--------|-----------------------|-------|--| | | P _{br} (n=8) | | P _{br} (n=2) | | | | | lbs | (N) | lbs | (N) | | | #1 thru #8 | 340 | (1512) | 85 | (378) | | | #9, #10 | 450 | (2002) | 113 | (503) | | | #11, #12 | 560 | (2491) | 140 | (623) | | | *Last digit(s) of joist designation shown in Load Table | | | | | | #### (e) Connections Attachments to the joist chords shall be made by welding or mechanical means and shall be capable of resisting the nominal (unfactored) horizontal force, P_{br}, of Equation 5.4-3, but not less 700 pounds (3114 N). #### (f) Bottom Chord Bearing Joists Where bottom chord bearing joists are utilized, a row of diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. #### 5.5 INSTALLATION OF BRIDGING Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the joist placement plans. The ends of all bridging lines terminating at walls or beams shall be anchored thereto. #### **5.6 BEARING SEAT ATTACHMENTS** #### (a) Masonry and Concrete Ends of **K-**Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto with a minimum of two 1/8 inch (3 mm) fillet welds 2 inches (51 mm) long, or with two 1/2 inch (13 mm) ASTM - A307 bolts, or the equivalent. #### (b) Steel Ends of **K-**Series Joists resting on steel supports shall be attached thereto with a minimum of two 1/8 inch (3 mm) fillet welds 2 inches (51 mm) long, or with two 1/2 inch (13 mm) ASTM – A307 bolts, or the equivalent. When **K-**Series Joists are used to provide lateral stability to the supporting member, the final connection shall be made by welding or as designated by the **specifying professional**. #### (c) Uplift Where uplift forces are a design consideration, roof joists shall be anchored to resist such forces (Refer to Section 5.11 Uplift). #### 5.7 JOIST SPACING Joists shall be spaced so that the loading on each joist does not exceed the design load (LRFD or ASD) for the particular joist designation and span as shown in the applicable load tables. #### 5.8 FLOOR AND ROOF DECKS #### (a) Material Floor and roof decks shall be permitted to consist of cast-in-place or pre-cast concrete or gypsum, formed steel, wood, or other suitable material capable of supporting the required load at the specified joist spacing. #### (b) Thickness Cast-in-place slabs shall be not less than 2 inches (51 mm) thick. #### (c) Centering Centering for cast-in-place slabs shall be permitted to be ribbed metal lath, corrugated steel sheets, paper-backed welded wire fabric, removable centering or any other suitable material capable of supporting the slab at the designated joist spacing. Centering shall not cause lateral displacement or damage to the top chord of joists during installation or removal of the centering or placing of the concrete. #### (d) Bearing Slabs or decks shall bear uniformly along the top chords of the joists. #### (e) Attachments The spacing for slab or deck attachments along the joist top chord shall not exceed 36 inches (914 mm), and shall be capable of resisting a nominal (unfactored) lateral force of not less than 300 pounds (1335 N), i.e., 100 plf (1.46 kN/m). #### (f) Wood Nailers Where wood nailers are used, such nailers in conjunction with deck or slab shall be attached to the top chords of the joists in conformance with Section 5.8(e). #### (g) Joist With Standing Seam Roofing or Laterally Unbraced Top Chords When the roof system does not provide lateral stability for the joists in accordance with Section 5.8 (e), (i.e. as may be the case with standing seam roofs or extended skylights and openings) sufficient stability shall be provided to brace the joists
laterally under the full design load. The compression chord shall resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). In any case where the attachment requirement of Section 5.8(e) is not achieved, out-of-plane strength shall be achieved by adjusting the bridging spacing and/or increasing the compression chord area and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/ry; where L is the bridging spacing in inches (millimeters). The maximum bridging spacing shall not exceed that specified in Section 5.4(c). Horizontal bridging members attached to the compression chords and their anchorages shall be designed for a compressive axial force of $0.001nP + 0.004 P\sqrt{n} \ge 0.0025nP$, where n is the number of joists between end anchors and P is the chord design force in kips (Newtons). The attachment force between the horizontal bridging member and the compression chord shall be 0.01P. Horizontal bridging attached to the tension chords shall be proportioned so that the slenderness ratio between attachments does not exceed 300. Diagonal bridging shall be proportioned so that the slenderness ratio between attachments does not exceed 200. #### 5.9 DEFLECTION The deflection due to the design nominal live load shall not exceed the following: Floors: 1/360 of span. **Roofs:** 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of joists. *For further reference, refer to Steel Joist Institute Technical Digest 5, Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. #### 5.10 PONDING The ponding investigation shall be performed by the specifying professional. *For further reference, refer to Steel Joist Institute Technical Digest 3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and the AISC Specification for Structural Steel Buildings. #### 5.11 UPLIFT Where uplift forces due to wind are a design requirement, these forces shall be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract documents shall indicate if the net uplift is based upon LRFD or ASD. When these forces are specified, they shall be considered in the design of joists and/or bridging. A single line of **bottom chord** bridging shall be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration. *For further reference, refer to Steel Joist Institute Technical Digest 6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads". #### 5.12 INSPECTION Joists shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of these specifications. If the purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, he shall be permitted to reserve the right to do so in his "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the joists at the manufacturing shop by the purchaser's inspectors at purchaser's expense. #### 5.13 PARALLEL CHORD SLOPED JOISTS The span of a parallel chord sloped joist shall be defined by the length along the slope. Minimum depth, load-carrying capacity, and bridging requirements shall be determined by the sloped definition of span. The Standard Load Table capacity shall be the component normal to the joist. #### SECTION 6. ## ERECTION STABILITY AND HANDLING* When it is necessary for the erector to climb on the joists, extreme caution shall be exercised since unbridged joists may exhibit some degree of instability under the erector's weight. #### (a) Stability Requirements 1) <u>Before an employee is allowed on the steel joist</u>: BOTH ends of joists at columns (or joists designated as column joists) shall be attached to its supports. For all other joists a minimum of one end shall be attached before the employee is allowed on the joist. The attachment shall be in accordance with <u>Section 5.6 - End Anchorage</u>. When a bolted seat connection is used for erection purposes, as a minimum, the bolts shall be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This shall be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. - 2) On steel joists that do not require erection bridging as shown by the unshaded area of the Load Tables, only one employee shall be allowed on the steel joist unless all bridging is installed and anchored. - 3) Where the span of the steel joist is within the red shaded area of the Load Table, the following shall apply: - a) The row of bridging nearest the mid span of the steel joists shall be bolted diagonal erection bridging; and - b) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored, unless an alternate method of stabilizing the joist has been provided; and - c) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - 4) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide stability. - 5) In the case of bottom chord bearing joists, the ends of the joist shall be restrained laterally per Section 5.4(f). - 6) After the joist is straightened and plumbed, and all bridging is completely installed and anchored, the ends of the joists shall be fully connected to the supports in accordance with <u>Section 5.6 End Anchorage</u>. #### (b) Landing and Placing Loads - 1) Except as stated in paragraphs 6(b)(3) and 6(b)(4) of this section, no "construction loads"⁽¹⁾ shall be allowed on the steel joists until all bridging is installed and anchored, and all joist bearing ends are attached. - During the construction period, loads placed on the steel joists shall be distributed so as not to exceed the capacity of the steel joists. - 3) The weight of a bundle of joist bridging shall not exceed a total of 1000 pounds (454 kilograms). The bundle of joist bridging shall be placed on a minimum of 3 steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1 foot (0.30 m) of the secured end. #### American National Standard SJI-K-2010 - 4) No bundle of deck shall be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless the following conditions are met: - a) The contractor has first determined from a qualified person and documented in a site-specific erection plan that the structure or portion of the structure is capable of supporting the load; - b) The bundle of decking is placed on a minimum of 3 steel joists; - c) The joists supporting the bundle of decking are attached at both ends; - d) At least one row of bridging is installed and anchored; - e) The total weight of the decking does not exceed 4000 pounds (1816 kilograms); and - f) The edge of the decking shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. - 5) The edge of the construction load shall be placed within 1 foot (.30 meters) of the bearing surface of the joist end. #### (c) Field Welding - 1) All field welding shall be performed in accordance with the contract documents. Field welding shall not damage the joists. - 2) On cold-formed members whose yield strength has been attained by cold working, and whose as-formed strength is used in the design, the total length of weld at any one point shall not exceed 50 percent of the overall developed width of the cold-formed section. #### (d) Handling Care shall be exercised at all times to avoid damage to the joists and accessories. #### (e) Fall Arrest Systems Steel joists shall not be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person" (2). *For a thorough coverage of this topic, refer to SJI Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders." - (1) See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists January 18, 2001, Washington, D.C. for definition of "construction load". - (2) See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists January 18, 2001, Washington, D.C. for definition of "qualified person". ## **DEFINITION OF SPAN** ALL STANDERS NOTES: 1) DESIGN LENGTH = SPAN - 0.33 FT. - 2) BEARING LENGTH FOR STEEL SUPPORTS SHALL NOT BE LESS THAN $2\frac{1}{2}$ INCHES ; FOR MASONRY AND CONCRETE NOT LESS THAN 4 INCHES. - 3) PARALLEL CHORD JOISTS INSTALLED TO A SLOPE GREATER THAN ½ INCH PER FOOT SHALL USE SPAN DEFINED BY THE LENGTH ALONG THE SLOPE. ## American National Standard SJI-K-2010 # STANDARD LRFD LOAD TABLE ## **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD K-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to
determine the factored LIVE load. The approximate joist weights do <u>not</u> include accessories. The RED figures in the Load Table represent the unfactored uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored uniform load for supplementary deflection criteria (i.e. an unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard ASD Load Table for Open Web Steel Joists, K-Series. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j = 26.767(W)(L³)(10⁻⁶), where W= RED figure in the Load Table, and L = (span – 0.33) in feet. ``` The TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD K-**Series Steel Joists shall not exceed 825 plf for spans shorter than what is explicitly shown in the Load Table. The maximum prorated unfactored RED load shall not exceed 550 plf (the TOTAL load-carrying capacity of the joist as given in the Standard **ASD** Load Table for Open Web Steel Joists, **K-**Series). Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joist and Joist Girders. | | | | | | | | RE | | | | | | | | | |-----------------|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------------| | | STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based On A 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf) Joist 10K1 12K1 12K3 12K5 14K1 14K3 14K4 14K6 16K2 16K3 16K4 16K5 16K6 16K7 16K9 | | | | | | | | | | | | | | | | | Joist Designation 10K1 12K1 12K3 12K5 14K1 14K3 14K4 14K6 16K2 16K3 16K4 16K5 16K6 16K7 16K9 Depth (in.) 10 12 12 12 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 10 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | //// | 16 | 16 | 16 | 16 | 16 | 16 | | (lbs./ft.) | 5.0 | 5.0 | 5.7 | 7.1 | 5.2 | 6.0 | 6.7 | 7.7 | 5.5 | 6.3 | 7.0 | 7.5 | 8.1 | 8.6 | 10.0 | | Span (ft.)
↓ | | | | | | | | | | | | | | | | | 10 | 825
550 | | | | | | | | | | | | | | | | 11 | 825
542 | | | | | | | | | | | | | | | | 12 | 825
455 | 825
550 | 825
550 | 825
550 | | | | | | | | | | | | | 13 | 718
363 | 825
510 | 825
510 | 825
510 | | | | | | | | | | | | | 14 | 618 | 750 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | | 289 | 425 | 463 | 463 | 550 | 550 | 550 | 550 | | | | | | | | | 15 | 537 | 651 | 814 | 825 | 766 | 825 | 825 | 825 | | | | | | | | | 16 | 234
469 | 344
570 | 428
714 | 434
825 | 475
672 | 507
825 | 507
825 | 507
825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | 10 | 192 | 282 | 351 | 396 | 390 | 467 | 467 | 467 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 17 | 415 | 504 | 630 | 825 | 592 | 742 | 825 | 825 | 768 | 825 | 825 | 825 | 825 | 825 | 825 | | 40 | 159 | 234 | 291 | 366 | 324 | 404 | 443 | 443 | 488 | 526 | 526 | 526 | 526 | 526 | 526 | | 18 | 369
134 | 448
197 | 561
245 | 760
317 | 528
272 | 661
339 | 795
397 | 825
408 | 684
409 | 762
456 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | | 19 | 331 | 402 | 502 | 681 | 472 | 592 | 712 | 825 | 612 | 682 | 820 | 825 | 825 | 825 | 825 | | | 113 | 167 | 207 | 269 | 230 | 287 | 336 | 383 | 347 | 386 | 452 | 455 | 455 | 455 | 455 | | 20 | 298 | 361 | 453 | 613 | 426 | 534 | 642 | 787 | 552 | 615 | 739 | 825 | 825 | 825 | 825 | | 21 | 97 | 142
327 | 177
409 | 230
555 | 197
385 | 246
483 | 287
582 | 347
712 | 297
499 | 330
556 | 386
670 | 426
754 | 426
822 | 426
825 | 426
825 | | 21 | | 123 | 153 | 198 | 170 | 212 | 248 | 299 | 255 | 285 | 333 | 373 | 405 | 406 | 406 | | 22 | | 298 | 373 | 505 | 351 | 439 | 529 | 648 | 454 | 505 | 609 | 687 | 747 | 825 | 825 | | | | 106 | 132 | 172 | 147 | 184 | 215 | 259 | 222 | 247 | 289 | 323 | 351 | 385 | 385 | | 23 | | 271 | 340 | 462 | 321 | 402 | 483 | 592 | 415 | 462 | 556 | 627 | 682 | 760 | 825 | | 24 | | 93
249 | 116
312 | 150
423 | 128
294 | 160
367 | 188
442 | 226
543 | 194
381 | 216
424 | 252
510 | 282
576 | 307
627 | 339
697 | 363
825 | | | | 81 | 101 | 132 | 113 | 141 | 165 | 199 | 170 | 189 | 221 | 248 | 269 | 298 | 346 | | 25 | | | | | 270
100 | 339
124 | 408
145 | 501
175 | 351
150 | 390
167 | 469
195 | 529
219 | 576
238 | 642
263 | 771
311 | | 26 | | | | | 249
88 | 313
110 | 376
129 | 462
156 | 324
133 | 360
148 | 433
173 | 489
194 | 532
211 | 592
233 | 711
276 | | 27 | | | | | 231
79 | 289
98 | 349
115 | 427
139 | 300
119 | 334
132 | 402
155 | 453
173 | 493
188 | 549
208 | 658
246 | | 28 | | | | | 214 | 270 | 324 | 397 | 279 | 310 | 373 | 421 | 459 | 510 | 612 | | 29 | | | | | 70 | 88 | 103 | 124 | 106
259 | 118
289 | 138
348 | 155
391 | 168
427 | 186
475 | 220
570 | | 30 | | | | | | | | | 95
241 | 106
270 | 124
324 | 139
366 | 151
399 | 167
444 | 198
532 | | | | | | | | | | | 86 | 96 | 112 | 126 | 137 | 151 | 178 | | 31 | | | | | | | | | 226
78 | 252
87 | 304
101 | 342
114 | 373
124 | 415
137 | 498
161 | | 32 | | | | | | | | | 213 | 237 | 285 | 321 | 349 | 388 | 466 | | | | | | | | | | | 71 | 79 | 92 | 103 | 112 | 124 | 147 | | | | | | | | | | | | | 7) | | | | | | | | | | | |---|------------|------------|------------|------------|------------|------------|------------|------------|-----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based On A 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf) Joist Designation Designation Designation | 18K3 | 18K4 | 18K5 | 18K6 | 18K7 | 18K9 | 18K10 | 20K3 | 20K4 | 20K5 | 20K6 | 20K7 | 20K9 | 20K10 | 22K4 | 22K5 | 22K6 | 22K7 | 22K9 | 22K10 | 22K11 | | Designation
Depth (In.) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | Approx. Wt. (lbs./ft.) | 6.4 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 6.5 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 7.3 | 7.7 | 8.5 | 9.0 | 10.2 | 11.7 | 11.9 | | Span (ft.) | 18 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | | | | | | | | 19 | 550
771 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | 0.0 | 494 | 523 | 523 | 523 | 523 | 523 | 523 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | 20 | 694
423 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 775
517 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | | | | | | | | | 21 | 630
364 | 759
426 | 825
460 | 825
460 | 825
460 | 825
460 | 825
460 | 702
453 | 825
520 | 825
520 | 825
520 | 825
520 | 825
520 | 825
520 | 825
550 | 22 | 573 | 690 | 777 | 825 | 825 | 825 | 825 | 639 | 771 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | 23 | 316
523 | 370
630 | 414
709 | 438
774 | 438
825 | 438
825 | 438
825 | 393
583 | 461
703 | 490
793 |
490
825 | 490
825 | 490
825 | 490
825 | 548
777 | 548
825 | 548
825 | 548
825 | 548
825 | 548
825 | 548
825 | | | 276 | 323 | 362 | 393 | 418 | 418 | 418 | 344 | 402 | 451 | 468 | 468 | 468 | 468 | 491 | 518 | 518 | 518 | 518 | 518 | 518 | | 24 | 480
242 | 577
284 | 651
318 | 709
345 | 789
382 | 825
396 | 825
396 | 535
302 | 645
353 | 727
396 | 792
430 | 825
448 | 825
448 | 825
448 | 712
431 | 804
483 | 825
495 | 825
495 | 825
495 | 825
495 | 825
495 | | 25 | 441
214 | 532
250 | 600
281 | 652
305 | 727
337 | 825
377 | 825
377 | 493
266 | 594
312 | 669
350 | 729
380 | 811
421 | 825
426 | 825
426 | 657
381 | 739
427 | 805
464 | 825
474 | 825
474 | 825
474 | 825
474 | | 26 | 408 | 492 | 553 | 603 | 672 | 807 | 825 | 456 | 549 | 618 | 673 | 750 | 825 | 825 | 606 | 682 | 744 | 825 | 825 | 825 | 825 | | 27 | 190
378 | 222
454 | 249
513 | 271
558 | 299
622 | 354
747 | 361
825 | 236
421 | 277
508 | 310
573 | 337
624 | 373
694 | 405
825 | 405
825 | 338
561 | 379
633 | 411
688 | 454
768 | 454
825 | 454
825 | 454
825 | | 28 | 169
351 | 198
423 | 222
477 | 241
519 | 267
577 | 315
694 | 347
822 | 211
391 | 247
472 | 277
532 | 301
579 | 333
645 | 389
775 | 389
825 | 301
522 | 337
588 | 367
640 | 406
712 | 432
825 | 432
825 | 432
825 | | | 151 | 177 | 199 | 216 | 239 | 282 | 331 | 189 | 221 | 248 | 269 | 298 | 353 | 375 | 270 | 302 | 328 | 364 | 413 | 413 | 413 | | 29 | 327
136 | 394
159 | 444
179 | 483
194 | 538
215 | 646
254 | 766
298 | 364
170 | 439
199 | 495
223 | 540
242 | 601
268 | 723
317 | 825
359 | 486
242 | 547
272 | 597
295 | 664
327 | 798
387 | 825
399 | 825
399 | | 30 | 304
123 | 367
144 | 414
161 | 451
175 | 502
194 | 603
229 | 715
269 | 340
153 | 411
179 | 462
201 | 504
218 | 561
242 | 675
286 | 799
336 | 453
219 | 511
245 | 556
266 | 619
295 | 745
349 | 825
385 | 825
385 | | 31 | 285 | 343 | 387 | 421 | 469 | 564 | 669 | 318 | 384 | 433 | 471 | 525 | 631 | 748 | 424 | 478 | 520 | 580 | 697 | 825 | 825 | | 32 | 267 | 130
322 | 146
363 | 158
396 | 175
441 | 207
529 | 243
627 | 138
298 | 162
360 | 182
406 | 198
442 | 219
492 | 259
592 | 304
702 | 198
397 | 222
448 | 241
489 | 267
544 | 316
654 | 369
775 | 369
823 | | 33 | 101 | 118
303 | 132 | 144 | 159 | 188 | 221
589 | 126
280 | 147
339 | 165 | 179 | 199 | 235
556 | 276 | 180
373 | 201
421 | 219
459 | 242
511 | 287 | 337
729 | 355 | | 33 | 252
92 | 108 | 342
121 | 372
131 | 414
145 | 498
171 | 201 | 114 | 134 | 381
150 | 415
163 | 463
181 | 214 | 660
251 | 164 | 183 | 199 | 221 | 615
261 | 307 | 798
334 | | 34 | 237
84 | 285
98 | 321
110 | 349
120 | 390
132 | 468
156 | 555
184 | 264
105 | 318
122 | 358
137 | 391
149 | 435
165 | 523
195 | 621
229 | 352
149 | 397
167 | 432
182 | 481
202 | 579
239 | 687
280 | 774
314 | | 35 | 223 | 268 | 303 | 330 | 367 | 441 | 523 | 249 | 300 | 339 | 369 | 411 | 493 | 585 | 331 | 373 | 408 | 454 | 546 | 648 | 741 | | 36 | 211 | 90
253 | 101
286 | 110
312 | 121
348 | 143
417 | 168
495 | 96
235 | 112
283 | 126
319 | 137
348 | 151
388 | 179
466 | 210
553 | 137
313 | 153
354 | 167
385 | 185
429 | 219
516 | 257
612 | 700 | | 37 | 70 | 82 | 92 | 101 | 111 | 132 | 154 | 88
222 | 103
268 | 115
303 | 125
330 | 139
367 | 164
441 | 193
523 | 126
297 | 141
334 | 153
364 | 169
406 | 201
487 | 236
579 | 269
663 | | 37 | | | | | | | | 81 | 95 | 106 | 115 | 128 | 151 | 178 | 116 | 130 | 141 | 156 | 185 | 217 | 247 | | 38 | | | | | | | | 211
74 | 255
87 | 286
98 | 312
106 | 348
118 | 418
139 | 496
164 | 280
107 | 316
119 | 345
130 | 384
144 | 462
170 | 549
200 | 628
228 | | 39 | | | | | | | | 199 | 241 | 271 | 297 | 330 | 397 | 471 | 267 | 300 | 327 | 364 | 438 | 520 | 595 | | 40 | | | | | | | | 69
190 | 81
229 | 90
258 | 98
282 | 109
313 | 129
376 | 151
447 | 98
253 | 110
285 | 120
310 | 133
346 | 157
417 | 185
495 | 211
565 | | 41 | | | | | | | | 64 | 75 | 84 | 91 | 101 | 119 | 140 | 91
241 | 102
271 | 111
295 | 123
330 | 146
396 | 171
471 | 195
538 | | | | | | | | | | | | | | | | | 85 | 95 | 103 | 114 | 135 | 159 | 181 | | 42 | | | | | | | | | | | | | | | 229
79 | 259
88 | 282
96 | 313
106 | 378
126 | 448
148 | 513
168 | | 43 | | | | | | | | | | | | | | | 219
73 | 247
82 | 268
89 | 300
99 | 360
117 | 427
138 | 489
157 | | 44 | | | | | | | | | | | | | | | 208 | 235 | 256 | 286 | 343 | 408 | 466 | | | | | | | | | | | | | | | | | 68 | 76 | 83 | 92 | 109 | 128 | 146 | | | | | | | | BLE FO | | WEB S1 | | | | | | | | |----------------------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|-----------------------| | | | Based C | n A 50 l | ksi Maxi | mum Yi | eld Strei | ngth - Lo | ads Sho | wn In Po | ounds P | er Linea | r Foot (p | olf) | | | | Joist
Designation | 24K4 | 24K5 | 24K6 | 24K7 | 24K8 | 24K9 | 24K10 | 24K12
24 | 26K5 | 26K6 | 26K7 | 26K8 | 26K9 | 26K10 | 26K12 | | Depth (In.)
Approx. Wt. | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | 26 | 26 | 26 | 26 | 26 | 26 | | | (lbs./ft.)
Span (ft.) | 7.8 | 7.9 | 8.5 | 9.0 | 9.4 | 10.3 | 11.7 | 13.5 | 8.1 | 8.6 | 9.0 | 9.7 | 10.4 | 11.8 | 13.7 | | ↓ , | | | | | | | | | | | | | | | | | 23 | 825
550 | | | | | | | | 24 | 780
516 | 825
544 | | | | | | | | 25 | 718 | 810 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | 456 | 511 | 520 | 520 | 520 | 520 | 520 | 520 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 26 | 663
405 | 748
453 | 814
493 | 825
499 | 825
499 | 825
499 | 825
499 | 825
499 | 813
535 | 825
541 | 825
541 | 825
541 | 825
541 | 825
541 | 825
541 | | 27 | 615 | 693 | 754 | 825 | 825 | 825 | 825 | 825 | 753 | 820 | 825 | 825 | 825 | 825 | 825 | | 28 | 361
571 | 404
643 | 439
700 | 479
781 | 479
825 | 479
825 | 479
825 | 479
825 | 477
699 | 519
762 | 522
825 | 522
825 | 522
825 | 522
825 | 522
825 | | 20 | 323 | 362 | 393 | 436 | 456 | 456 | 456 | 456 | 427 | 464 | 501 | 501 | 501 | 501 | 501 | | 29 | 531 | 600 | 652 | 727 | 804 | 825 | 825 | 825 | 651 | 709 | 790 | 825 | 825 | 825 | 825 | | 30 | 290
496 | 325
559 | 354
609 | 392
679 | 429
750 | 436
816 | 436
825 | 436
825 | 384
607 | 417
661 | 463
738 | 479
816 | 479
825 | 479
825 | 479
825 | | 30 | 262 | 293 | 319 | 353 | 387 | 419 | 422 | 422 | 346 | 377 | 417 | 457 | 459 | 459 | 459 | | 31 | 465 | 523 | 570 | 636 | 702 | 765 | 825 | 825 | 568 | 619 | 690 | 763 | 825 | 825 | 825 | | | 237 | 266 | 289 | 320 | 350 | 379 | 410 | 410 | 314 | 341 | 378 | 413 | 444 | 444 | 444 | | 32 | 435
215 | 490
241 | 535
262 | 595
290 | 658
318 | 717
344 | 823
393 | 823
393 | 534
285 | 580
309 | 648
343 | 715
375 | 778
407 | 823
431 | 823
431 | | 33 | 409 | 462 | 502 | 559 | 619 | 673 | 798 | 798 | 501 | 546 | 609 | 672 | 732 | 798 | 798 | | 34 | 196
385 | 220
435 | 239
472 | 265
526 | 289
582 | 313
634 | 368
753 | 368
774 | 259
472 | 282
514 | 312
573 | 342
633 | 370
688 | 404
774 | 404
774 | | ٥, | 179 | 201 | 218 | 242 | 264 | 286 | 337 | 344 | 237 | 257 | 285 | 312 | 338 | 378 | 378 | | 35 | 363 | 409 | 445 | 496 | 549 | 598 | 709 | 751 | 445 | 484 | 540 | 597 | 649 | 751 | 751 | | 36 | 164
343 | 184
387 | 200
421 | 221
469 | 242
519 | 262
565 | 308
670 | 324
730 | 217
420 | 236
457 | 261
510 | 286
564 | 310
613 | 356
729 | 356
730 | | 30 | 150 | 169 | 183 | 203 | 222 | 241 | 283 | 306 | 199 | 216 | 240 | 263 | 284 | 334 | 334 | | 37 | 324
138 | 366
155 | 399
169 | 444
187 | 490
205 | 534
222 | 634
260 | 711
290 | 397
183 | 433
199 | 483
221 | 534
242 | 580
262 | 690
308 | 711
315 | | 38 | 307 | 346 | 378 | 421 | 465 | 507 | 601 | 691 | 376 | 411 | 457 | 505 | 550 | 654 | 691 | | | 128 | 143 | 156 | 172 | 189 | 204 | 240 | 275 | 169 | 184 | 204 | 223 | 241 | 284 | 299 | | 39 | 292
118 | 328
132 | 358
144 | 399
159 | 441
174 | 480
189 | 570
222 | 673
261 | 357
156 | 390
170 | 433
188 | 480
206 | 522
223 | 619
262 | 673
283 | | 40 | 277 | 312 | 340 | 379 | 420 | 456 | 541 | 657 | 340 | 370 | 412 | 456 | 496 | 589 | 657 | | 44 | 109 | 122 | 133 | 148 | 161 | 175 | 206 | 247 | 145 | 157 | 174 | 191 | 207 | 243 | 269 | | 41 | 264
101 | 297
114 | 324
124 | 361
137 | 399
150 | 435
162 | 516
191 | 640
235 | 322
134 | 352
146 | 393
162 | 433
177 | 472
192 | 561
225 | 640
256 | | 42 | 252 | 283 | 309 | 343 | 379 | 414 | 490 | 625 | 307 | 336 | 373 | 412 | 450 | 534 | 625 | | | 94 | 106 | 115 | 127 | 139 | 151 | 177 | 224 | 125 | 136 | 150 | 164 | 178 | 210 | 244 | | 43 | 240
88 | 270
98 | 294
107 | 328
118 | 363
130 | 394
140 | 468
165 | 609
213 | 294
116 | 319
126 | 357
140 | 394
153 | 429
166 | 508
195 | 610
232 | | 44 | 229 | 258 | 280 | 313 | 346 | 376 | 447 | 580 | 280 | 306 | 340 | 376 | 409 | 486 | 597 | | 45 | 82
219 | 92
246 | 100
268 | 110
298 | 121
330 |
131
360 | 154
427 | 199
555 | 108
268 | 118
291 | 131
325 | 143
360 | 155
391 | 182
465 | 583 | | | 76 | 86 | 93 | 103 | 113 | 122 | 144 | 185 | 101 | 110 | 122 | 133 | 145 | 170 | 212 | | 46 | 208
71 | 235
80 | 256
87 | 286
97 | 316
106 | 345
114 | 408
135 | 531
174 | 256
95 | 279
103 | 310
114 | 343
125 | 375
135 | 444
159 | 570
203 | | 47 | 199 | 225 | 246 | 274 | 303 | 330 | 391 | 508 | 246 | 267 | 298 | 328 | 358 | 426 | 553 | | 48 | 67
192 | 75
216 | 82
235 | 90
262 | 99
291 | 107
316 | 126
375 | 163
487 | 89
235 | 96
256 | 107
285 | 117
315 | 127
343 | 149
408 | 192
529 | | | 63 | 70 | 77 | 85 | 93 | 101 | 118 | 153 | 83 | 90 | 100 | 110 | 119 | 140 | 180 | | 49 | | | | | | | | | 225
78 | 246
85 | 274
94 | 303
103 | 330
112 | 391
131 | 508
169 | | 50 | | | | | | | | | 216 | 235 | 262 | 291 | 316 | 375 | 487 | | 51 | | | | | | | | | 73
208 | 80
226 | 89
252 | 97
279 | 105
304 | 124
361 | 159
469 | | 52 | | | | | | | | | 69
199 | 75
217 | 83 | 91
268 | 99
292 | 116
346 | 150
451 | | 52 | | | | | | | | | 65 | 217
71 | 243
79 | 86 | 93 | 110 | 142 | | | Ва | ased On A | | | TABLE/OF | EN WEB S | STEEL JOI | | | Foot (plf) | | | |---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Joist
Designation | 28K6 | 28K7 | 28K8 | 28K9 | 28K10 | 28K12 | 30K7 | 30K8 | 30K9 | 30K10 | 30K11 | 30K12 | | Depth (In.) | 28 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 30 | 30 | | Approx. Wt.
(lbs./ft.) | 8.9 | 9.2 | 9.8 | 10.5 | 11.8 | 14.5 | 9.6 | 10.0 | 10.6 | 11.9 | 13.3 | 15.0 | | Span (ft.)
↓ | | | | | | | | | | | | | | 27 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | 00 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | 28 | 822
541 | 825
543 | 825
543 | 825
543 | 825
543 | 825
543 | | | | | | | | 29 | 766 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | 486 | 522 | 522 | 522 | 522 | 522 | 550 | 550 | 550 | 550 | 550 | 550 | | 30 | 715
439 | 796
486 | 825
500 | 825
500 | 825
500 | 825
500 | 825
543 | 825
543 | 825
543 | 825
543 | 825
543 | 825
543 | | 31 | 669 | 745 | 825 | 825 | 825 | 825 | 801 | 825 | 825 | 825 | 825 | 825 | | | 397 | 440 | 480 | 480 | 480 | 480 | 508 | 520 | 520 | 520 | 520 | 520 | | 32 | 627
361 | 699
400 | 772
438 | 823
463 | 823
463 | 823
463 | 751
461 | 823
500 | 823
500 | 823
500 | 823
500 | 823
500 | | 33 | 589 | 657 | 726 | 790 | 798 | 798 | 706 | 780 | 798 | 798 | 798 | 798 | | | 329 | 364 | 399 | 432 | 435 | 435 | 420 | 460 | 468 | 468 | 468 | 468 | | 34 | 555
300 | 618
333 | 684
364 | 744
395 | 774
410 | 774
410 | 664
384 | 735 | 774
441 | 774
441 | 774
441 | 774
441 | | 35 | 523 | 583 | 645 | 702 | 751 | 751 | 627 | 420
693 | 751 | 751 | 751 | 751 | | | 275 | 305 | 333 | 361 | 389 | 389 | 351 | 384 | 415 | 415 | 415 | 415 | | 36 | 495 | 550 | 609 | 663 | 730 | 730 | 592 | 654 | 712 | 730 | 730 | 730 | | 37 | 252
468 | 280
522 | 306
576 | 332
627 | 366
711 | 366
711 | 323
559 | 353
619 | 383
673 | 392
711 | 392
711 | 392
711 | | 0. | 232 | 257 | 282 | 305 | 344 | 344 | 297 | 325 | 352 | 374 | 374 | 374 | | 38 | 444 | 493 | 546 | 594 | 691 | 691 | 531 | 586 | 639 | 691 | 691 | 691 | | 39 | 214
420 | 237
469 | 260
519 | 282
564 | 325
670 | 325
673 | 274
504 | 300
556 | 325
606 | 353
673 | 353
673 | 353
673 | | 33 | 198 | 219 | 240 | 260 | 306 | 308 | 253 | 277 | 300 | 333 | 333 | 333 | | 40 | 399 | 445 | 492 | 535 | 636 | 657 | 478 | 529 | 576 | 657 | 657 | 657 | | 41 | 183
379 | 203
424 | 222
468 | 241
510 | 284
606 | 291
640 | 234
454 | 256
502 | 278
547 | 315
640 | 315
640 | 315
640 | | 41 | 170 | 189 | 206 | 224 | 263 | 277 | 217 | 238 | 258 | 300 | 300 | 300 | | 42 | 361 | 403 | 445 | 486 | 576 | 625 | 433 | 480 | 522 | 619 | 625 | 625 | | 40 | 158 | 175 | 192 | 208 | 245 | 264 | 202 | 221 | 240 | 282 | 284 | 284 | | 43 | 345
147 | 385
163 | 426
179 | 463
194 | 550
228 | 610
252 | 414
188 | 457
206 | 498
223 | 591
263 | 610
270 | 610
270 | | 44 | 330 | 367 | 406 | 442 | 525 | 597 | 394 | 436 | 475 | 564 | 597 | 597 | | 45 | 137
315 | 152
351 | 167
388 | 181
423 | 212
501 | 240
583 | 176
376 | 192
417 | 208
454 | 245
538 | 258
583 | 258
583 | | 45 | 128 | 142 | 156 | 169 | 198 | 229 | 164 | 179 | 195 | 229 | 246 | 246 | | 46 | 301 | 336 | 372 | 405 | 480 | 570 | 361 | 399 | 435 | 516 | 570 | 570 | | 47 | 120
288 | 133
321 | 146
355 | 158
387 | 186
459 | 219
558 | 153
345 | 168
382 | 182
415 | 214
493 | 236
558 | 236
558 | | 71 | 112 | 125 | 136 | 148 | 174 | 210 | 144 | 157 | 171 | 201 | 226 | 226 | | 48 | 276 | 309 | 340 | 370 | 441 | 547 | 331 | 366 | 399 | 472 | 543 | 547 | | 49 | 105
265 | 117
295 | 128
327 | 139
355 | 163
423 | 201
535 | 135
318 | 148
351 | 160
382 | 188
454 | 215
520 | 216
535 | | 45 | 99 | 110 | 120 | 130 | 153 | 193 | 127 | 139 | 150 | 177 | 202 | 207 | | 50 | 255 | 283 | 313 | 342 | 405 | 525 | 304 | 337 | 367 | 436 | 499 | 525 | | 51 | 93
244 | 103
273 | 113
301 | 123
328 | 144
390 | 185
507 | 119
292 | 130
324 | 141
352 | 166
418 | 190
480 | 199
514 | | ٠. | 88 | 97 | 106 | 115 | 136 | 175 | 112 | 123 | 133 | 157 | 179 | 192 | | 52 | 235 | 262 | 289 | 315 | 375 | 487 | 282 | 312 | 339 | 402 | 462 | 504 | | 53 | 83
226 | 92
252 | 100
279 | 109
304 | 128
360 | 165
469 | 106
271 | 116
300 | 126
327 | 148
387 | 169
444 | 184
495 | | | 78 | 87 | 95 | 103 | 121 | 156 | 100 | 109 | 119 | 140 | 159 | 177 | | 54 | 217 | 243 | 268 | 292 | 348 | 451 | 261 | 288 | 313 | 373 | 427 | 486 | | 55 | 74
210 | 82
234 | 89
259 | 97
282 | 114
334 | 147
435 | 94
252 | 103
277 | 112
303 | 132
360 | 150
412 | 170
468 | | | 70 | 77 | 85 | 92 | 108 | 139 | 89 | 98 | 106 | 125 | 142 | 161 | | 56 | 202 | 226 | 249 | 271 | 322 | 420 | 243 | 268 | 292 | 346 | 397 | 451 | | 57 | 66 | 73 | 80 | 87 | 102 | 132 | 234 | 92
259 | 100
282 | 118
334 | 135
384 | 153
435 | | | | | | | | | 80 | 88 | 95 | 112 | 128 | 145 | | 58 | | | | | | | 226 | 250 | 271 | 322 | 370 | 420 | | 59 | | | | | | | 76
219 | 83
241 | 90
262 | 106
312 | 121
358 | 137
406 | | | | | | | | | 72 | 79 | 86 | 101 | 115 | 130 | | 60 | | | | | | | 211
69 | 234
75 | 253
81 | 301
96 | 346
109 | 393
124 | ## American National Standard SJI K-2010 # STANDARD ASD LOAD TABLE ## **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute November 4, 1985 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD K-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figure by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j = 26.767(W)(L^3)(10^{-6}), where W= RED figure in the Load Table, and L = (span – 0.33) in feet. ``` The TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD K-**Series Steel Joists shall not exceed 550 plf for spans shorter than what is explicitly shown in the Load Table. The maximum prorated RED load shall not exceed 550 plf (the TOTAL load-carrying capacity of the joist as given in the Standard **ASD** Load Table for Open Web Steel Joists, **K-**Series). Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joist and Joist Girders. | | Ва | sed on a | | | | | | | EEL JO | | | | (plf) | | | |--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Joist
Designation | 10K1 | 12K1 | 12K3 | 12K5 | 14K1 | 14K3 | 14K4 | 14K6 | 16K2 | 16K3 | 16K4 | 16K5 | 16K6 | 16K7 | 16K9 | | Depth (in.) | 10 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Approx.
Wt
(lbs./ft.) | 5.0 | 5.0 | 5.7 | 7.1 | 5.2 | 6.0 | 6.7 | 7.7 | 5.5 | 6.3 | 7.0 | 7.5 | 8.1 | 8.6 | 10.0 | | Span (ft.) | | | | | | | | | | | | | | | | | 10 | 550
550 | | | | | | | | | | | | | | | | 11 | 550
542 | | | | | | | | | | | | | | | | 12 | 550
455 | 550
550 | 550
550 | 550
550 | | | | | | | | | | | | | 13 | 479
363 | 550
510 | 550
510 | 550
510 | | | | | | | | | | | | | 14 | 412
289 | 500
425 | 550
463 | 550
463 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | 15 | 358
234 | 434
344 | 543
428 | 550
434 | 511
475 | 550
507 | 550
507 | 550
507 | | | | | | | | | 16 | 313
192 | 380
282 | 476
351 | 550
396 | 448
390 | 550
467 | 550
467 | 550
467 | 550
550 | 17 | 277
159 | 336
234 | 420
291 | 550
366 | 395
324 | 495
404 | 550
443 | 550
443 | 512
488 | 550
526 | 550
526 | 550
526 | 550
526 | 550
526 | 550
526 | | 18 | 246
134 | 299
197 | 374
245 | 507
317 | 352
272 | 441
339 | 530
397 | 550
408 | 456
409 | 508
456 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | | 19 | 221
113 | 268
167 | 335
207 | 454
269 | 315
230 | 395
287 | 475
336 | 550
383 | 408
347 | 455
386 | 547
452 | 550
455 | 550
455 | 550
455 | 550
455 | | 20 | 199
97 | 241
142 | 302
177 | 409
230 | 284
197 | 356
246 | 428
287 | 525
347 | 368
297 | 410
330 | 493
386 | 550
426 | 550
426 | 550
426 | 550
426 | | 21 | | 218
123 | 273
153 | 370
198 | 257
170 | 322
212 | 388
248 | 475
299 | 333
255 | 371
285 | 447
333 | 503
373 | 548
405 | 550
406 | 550
406 | | 22 | | 199
106 | 249
132 | 337
172 | 234
147 | 293
184 | 353
215 | 432
259 | 303
222 | 337
247 | 406
289 | 458
323 | 498
351 | 550
385 | 550
385 | | 23 | | 181
93 | 227
116 | 308
150 | 214
128 | 268
160 | 322
188 | 395
226 | 277
194 | 308
216 | 371
252 | 418
282 | 455
307 | 507
339 | 550
363 | | 24 | | 166
81 | 208
101 | 282
132 | 196
113 | 245
141 | 295
165 | 362
199 | 254
170 | 283
189 | 340
221 | 384
248 | 418
269 | 465
298 | 550
346 | | 25 | | | | | 180
100 | 226
124 | 272
145 | 334
175 | 234
150 | 260
167 | 313
195 | 353
219 | 384
238 | 428
263 | 514
311 | | 26 | | | | | 166
88 | 209
110 | 251
129 | 308
156 | 216
133 | 240
148 | 289
173 | 326
194 | 355
211 | 395
233 | 474
276 | | 27 | | | | | 154
79 | 193
98 | 233
115 | 285
139 | 200
119 | 223
132 | 268
155 | 302
173 | 329
188 | 366
208 | 439
246 | | 28 | | | | | 143
70 | 180
88 | 216
103 | 265
124 | 186
106 | 207
118 | 249
138 | 281
155 | 306
168 | 340
186 | 408
220 | | 29 | | | | | | | | | 173
95 | 193
106 | 232
124 | 261
139 | 285
151 | 317
167 | 380
198 | | 30 | | | | | | | | | 161
86 | 180
96 | 216
112 | 244
126 | 266
137 | 296
151 | 355
178 | | 31 | | | | | | | | | 151
78 | 168
87 | 203
101 | 228
114 | 249
124 | 277
137 | 332
161 | | 32 | | | | | | | | | 142 | 158
79 | 190
92 | 214
103 | 233
112 | 259
124 | 311
147 | | | | | | | | | | | | 15 | | | | | | | | | | | | |---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------| | | | | Based | | | | | | | | | | | ISTS, K
unds F | | | oot (p | lf) | | | | | Joist
Designation | 18K3 | 18K4 | 18K5 | 18K6 | 18K7 | 18K9 | 18K10 | 20K3 | 20K4 | 20K5 | 20K6 | 20K7 | 20K9 | 20K10 | 22K4 | 22K5 | 22K6 | 22K7 | 22K9 | 22K10 | 22K11 | | Depth (In.) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | Approx. Wt.
(lbs./ft.) | 6.4 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 6.5 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 7.3 | 7.7 | 8.5 | 9.0 | 10.2 | 11.7 | 11.9 | | Span (ft.)
↓ | 18 | 550
550 | | | | | | | | | | | | | | | 19 | 514 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | 20 | 494
463 | 523
550 | 523
550 | 523
550 | 523
550 | 523
550 | 523
550 | 550
517 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | 21 | 423
420 | 490
506 | 490
550 | 490
550 | 490
550 | 490
550 | 490
550 | 517
468 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 22 | 364
382 | 426
460 | 460
518 | 460
550 | 460
550 | 460
550 | 460
550 | 453
426 | 520
514 | 520
550 | 520
550 | 520
550 | 520
550 | 520
550 | 550
550 | | 316 | 370 | 414 | 438 | 438 | 438 | 438 | 393 | 461 | 490 | 490 | 490 | 490 | 490 | 548 | 548 | 548 | 548 | 548 | 548 | 548 | | 23 | 349
276 | 420
323 | 473
362 | 516
393 | 550
418 | 550
418 | 550
418 | 389
344 | 469
402 | 529
451 | 550
468 | 550
468 | 550
468 | 550
468 | 518
491 | 550
518 | 550
518 | 550
518 | 550
518 | 550
518 | 550
518 | | 24 | 320
242 | 385
284 | 434
318 | 473
345 | 526
382 | 550
396 | 550
396 | 357
302 | 430
353 | 485
396 | 528
430 | 550
448 | 550
448 | 550
448 | 475
431 | 536
483 | 550
495 | 550
495 | 550
495 | 550
495 | 550
495 | | 25 | 294 | 355 | 400 | 435 | 485 | 550 | 550 | 329 | 396 | 446 | 486 | 541 | 550 | 550 | 438 | 493 | 537 | 550 | 550 | 550 | 550 | | 26 | 214
272 | 250
328 | 281
369 | 305
402 | 337
448 | 377
538 | 377
550 | 266
304 | 312
366 | 350
412 | 380
449 | 421
500 | 426
550 | 426
550 | 381
404 | 427
455 | 464
496 | 474
550 | 474
550 | 474
550 | 474
550 | | 27 | 190
252 | 303 | 249
342 | 271
372 | 299
415 | 354
498 | 361
550 | 236
281 | 277
339 | 310
382 | 337
416 | 373
463 | 405
550 | 405
550 | 338
374 | 379
422 | 411
459 | 454
512 | 454
550 | 454
550 | 454
550 | | 28 | 169
234 | 198
282 | 222
318 | 241
346 | 267
385 | 315
463 | 347
548 | 211
261 | 247
315 | 277
355 | 301
386 | 333
430 | 389
517 | 389
550 | 301
348 | 337
392 | 367
427 | 406
475 | 432
550 | 432
550 | 432
550 | | | 151 | 177 | 199 | 216 | 239 | 282 | 331 | 189 | 221 | 248 | 269 | 298 | 353 | 375 | 270 | 302 | 328 | 364 | 413 | 413 | 413 | | 29 | 218
136 | 263
159 | 296
179 | 322
194 | 359
215 | 431
254 | 511
298 | 243
170 | 293
199 | 330
223 | 360
242 | 401
268 | 482
317 | 550
359 | 324
242 | 365
272 | 398
295 | 443
327 | 532
387 | 550
399 | 550
399 | | 30 | 203
123 | 245
144 | 276
161 | 301
175 | 335
194 | 402
229 | 477
269 | 227
153 | 274
179 | 308
201 | 336
218 | 374
242 | 450
286 | 533
336 | 302
219 | 341
245 | 371
266 | 413
295 | 497
349 | 550
385 | 550
385 | | 31 | 190 | 229 | 258 | 281 | 313 | 376 | 446 | 212 | 256 | 289 | 314 | 350 | 421 | 499 | 283 | 319 | 347 | 387 | 465 | 550 | 550 | | 32 | 111 | 130
215 | 146
242 | 158
264 | 175
294 | 207
353 | 243
418 | 138
199 | 162
240 | 182
271 | 198
295 | 219
328 | 259
395 | 304
468 | 198
265 | 299 | 241
326 | 267
363 | 316
436 | 369
517 | 369
549 | | 33 | 101
168 | 118
202 | 132
228 | 144
248 | 159
276 | 188
332 | 221
393 | 126
187 | 147
226 | 165
254 | 179
277 | 199
309 | 235
371 | 276
440 | 180
249 | 201
281 | 219
306 | 242
341 | 287
410 | 337
486 | 355
532 | | 34 | 92
158 | 108
190 | 121
214 | 131
233 | 145
260 | 171
312 | 201
370 | 114
176 | 134
212 | 150
239 | 163
261 | 181
290 | 214
349 | 251
414 | 164
235 | 183
265 | 199
288 | 221
321 | 261
386 | 307
458 | 334
516 | | | 84 | 98 | 110 | 120 | 132 | 156 | 184 | 105 | 122 | 137 | 149 | 165 | 195 | 229 | 149 | 167 | 182 | 202 | 239 | 280 | 314 | | 35 | 149
77 | 179
90 | 202
101 | 220
110 | 245
121 | 294
143 | 349
168 | 166
96 | 200
112 | 226
126 | 246
137 | 274
151 | 329
179 | 390
210 | 221
137 | 249
153 | 272
167 | 303
185 | 364
219 | 432
257 | 494
292 | | 36 | 141
70 | 169
82 | 191
92 | 208
101 | 232
111 | 278
132 | 330
154 | 157
88 | 189
103 | 213
115 | 232
125 | 259
139 | 311
164 | 369
193 | 209
126 | 236
141 | 257
153 | 286
169 | 344
201 | 408
236 | 467
269 | | 37 | | | | | | | | 148
81 | 179
95 | 202
106 | 220 | 245 | 294 | 349 | 198
116 | 223 | 243
141 | 271 | 325
185 | 386 | 442 | | 38 | | | | | | | | 141 | 170 | 191 | 208 | 232 | 151
279 | 331 | 187 | 211 | 230 | 156
256 | 308 | 217
366 | 419 | | 39 | | | | | | | | 74
133 | 87
161 | 98
181 | 106
198 | 118
220 | 139
265 | 164
314 | 107
178 | 200 | 130
218 | 144
243 | 170
292 | 200
347 | 228
397 | | 40 | | | | | | | | 69
127 | 81
153 | 90
172 | 98
188 | 109
209 | 129
251 | 151
298 | 98
169 | 110
190 | 120
207 | 133
231 | 157
278 | 185
330 | 211
377 | | | | | | | | | | 64 | 75 | 84 | 91 | 101 | 119 | 140 | 91 | 102 | 111 | 123 | 146 | 171
314 | 195 | | 41 | | | | | | | | | | | | | | | 161
85 | 181
95 | 197
103 |
220
114 | 264
135 | 159 | 359
181 | | 42 | | | | | | | | | | | | | | | 153
79 | 173
88 | 188
96 | 209
106 | 252
126 | 299
148 | 342
168 | | 43 | | | | | | | | | | | | | | | 146
73 | 165
82 | 179
89 | 200
99 | 240
117 | 285
138 | 326
157 | | 44 | | | | | | | | | | | | | | | 139 | 157 | 171 | 191 | 229 | 272 | 311 | | | | | | | | | | | | | | | | | 68 | 76 | 83 | 92 | 109 | 128 | 146 | | | | | etal | UDARD I | OAD T | | D ODEN | WEB ST | EEL IO | ICTC K | CEDIEC | | | | | |---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------------|------------|------------|------------|------------|------------| | | | Based | | | | | | ads Sho | | person in copied tooks i | | Foot (p | lf) | | | | Joist
Designation | 24K4 | 24K5 | 24K6 | 24K7 | 24K8 | 24K9 | 24K10 | 24K12 | 26K5 | 26K6 | 26K7 | 26K8 | 26K9 | 26K10 | 26K12 | | Depth (In.) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Approx. Wt.
(lbs./ft.) | 7.8 | 7.9 | 8.5 | 9.0 | 9.4 | 10.3 | 11.7 | 13.5 | 8.1 | 8.6 | 9.0 | 9.7 | 10.4 | 11.8 | 13.7 | | Span (ft.)
↓ | | | | | | | | | | | | | | | | | 23 | 550
550 | | | | | | | | 24 | 520
516 | 550
544 | | | | | | | | 25 | 479 | 540 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | 456 | 511 | 520 | 520 | 520 | 520 | 520 | 520 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 26 | 442
405 | 499
453 | 543
493 | 550
499 | 550
499 | 550
499 | 550
499 | 550
499 | 542
535 | 550
541 | 550
541 | 550
541 | 550
541 | 550
541 | 550
541 | | 27 | 410 | 462 | 503 | 550 | 550 | 550 | 550 | 550 | 502 | 547 | 550 | 550 | 550 | 550 | 550 | | 28 | 361
381 | 404
429 | 439
467 | 479
521 | 479
550 | 479
550 | 479
550 | 479
550 | 477
466 | 519
508 | 522
550 | 522
550 | 522
550 | 522
550 | 522
550 | | 20 | 323 | 362 | 393 | 436 | 456 | 456 | 456 | 456 | 427 | 464 | 501 | 501 | 501 | 501 | 501 | | 29 | 354 | 400 | 435 | 485 | 536 | 550 | 550 | 550 | 434 | 473 | 527 | 550 | 550 | 550 | 550 | | | 290 | 325 | 354 | 392 | 429 | 436 | 436 | 436 | 384 | 417 | 463 | 479 | 479 | 479 | 479 | | 30 | 331
262 | 373
293 | 406
319 | 453
353 | 500
387 | 544
419 | 550
422 | 550
422 | 405
346 | 441
377 | 492
417 | 544
457 | 550
459 | 550
459 | 550
459 | | 31 | 310 | 349 | 380 | 424 | 468 | 510 | 550 | 550 | 379 | 413 | 460 | 509 | 550 | 550 | 550 | | | 237 | 266 | 289 | 320 | 350 | 379 | 410 | 410 | 314 | 341 | 378 | 413 | 444 | 444 | 444 | | 32 | 290 | 327 | 357 | 397 | 439 | 478 | 549 | 549 | 356 | 387 | 432 | 477 | 519 | 549 | 549 | | 33 | 215
273 | 241
308 | 262
335 | 290
373 | 318
413 | 344
449 | 393
532 | 393
532 | 285
334 | 309
364 | 343
406 | 375
448 | 407
488 | 431
532 | 431
532 | | | 196 | 220 | 239 | 265 | 289 | 313 | 368 | 368 | 259 | 282 | 312 | 342 | 370 | 404 | 404 | | 34 | 257 | 290 | 315 | 351 | 388 | 423 | 502 | 516 | 315 | 343 | 382 | 422 | 459 | 516 | 516 | | 35 | 179 | 201
273 | 218
297 | 242 | 264
366 | 286 | 337 | 344
501 | 237 | 257 | 285
360 | 312
398 | 338
433 | 378
501 | 378 | | 35 | 242
164 | 184 | 200 | 331
221 | 242 | 399
262 | 473
308 | 324 | 297
217 | 323
236 | 261 | 286 | 310 | 356 | 501
356 | | 36 | 229 | 258 | 281 | 313 | 346 | 377 | 447 | 487 | 280 | 305 | 340 | 376 | 409 | 486 | 487 | | 37 | 150
216 | 169
244 | 183
266 | 203
296 | 222
327 | 241
356 | 283
423 | 306
474 | 199
265 | 216
289 | 240
322 | 263
356 | 284
387 | 334
460 | 334
474 | | 31 | 138 | 155 | 169 | 187 | 205 | 222 | 260 | 290 | 183 | 199 | 221 | 242 | 262 | 308 | 315 | | 38 | 205 | 231 | 252 | 281 | 310 | 338 | 401 | 461 | 251 | 274 | 305 | 337 | 367 | 436 | 461 | | | 128 | 143 | 156 | 172 | 189 | 204 | 240 | 275 | 169 | 184 | 204 | 223 | 241 | 284 | 299 | | 39 | 195
118 | 219
132 | 239
144 | 266
159 | 294
174 | 320
189 | 380
222 | 449
261 | 238
156 | 260
170 | 289
188 | 320
206 | 348
223 | 413
262 | 449
283 | | 40 | 185 | 208 | 227 | 253 | 280 | 304 | 361 | 438 | 227 | 247 | 275 | 304 | 331 | 393 | 438 | | | 109 | 122 | 133 | 148 | 161 | 175 | 206 | 247 | 145 | 157 | 174 | 191 | 207 | 243 | 269 | | 41 | 176
101 | 198
114 | 216
124 | 241
137 | 266
150 | 290
162 | 344
191 | 427
235 | 215
134 | 235
146 | 262
162 | 289
177 | 315
192 | 374
225 | 427
256 | | 42 | 168 | 189 | 206 | 229 | 253 | 276 | 327 | 417 | 205 | 224 | 249 | 275 | 300 | 356 | 417 | | 200 | 94 | 106 | 115 | 127 | 139 | 151 | 177 | 224 | 125 | 136 | 150 | 164 | 178 | 210 | 244 | | 43 | 160
88 | 180
98 | 196
107 | 219 | 242 | 263
140 | 312
165 | 406
213 | 196
116 | 213 | 238
140 | 263
153 | 286
166 | 339
195 | 407 | | 44 | 153 | 172 | 187 | 118
209 | 130
231 | 251 | 298 | 387 | 187 | 126
204 | 227 | 251 | 273 | 324 | 232
398 | | | 82 | 92 | 100 | 110 | 121 | 131 | 154 | 199 | 108 | 118 | 131 | 143 | 155 | 182 | 222 | | 45 | 146
76 | 164
86 | 179
93 | 199
103 | 220
113 | 240
122 | 285
144 | 370
185 | 179
101 | 194
110 | 217
122 | 240
133 | 261
145 | 310
170 | 389
212 | | 46 | 139 | 157 | 171 | 191 | 211 | 230 | 272 | 354 | 171 | 186 | 207 | 229 | 250 | 296 | 380 | | 47 | 71
133 | 80
150 | 87
164 | 97
183 | 106
202 | 114
220 | 135
261 | 174
339 | 95
164 | 103
178 | 114
199 | 125
219 | 135
239 | 159
284 | 203
369 | | 41 | 67 | 75 | 82 | 90 | 99 | 107 | 126 | 163 | 89 | 96 | 107 | 117 | 127 | 149 | 192 | | 48 | 128
63 | 144
70 | 157
77 | 175
85 | 194
93 | 211
101 | 250
118 | 325
153 | 157
83 | 171
90 | 190
100 | 210
110 | 229
119 | 272
140 | 353
180 | | 49 | | | | | | .01 | | .50 | 150 | 164 | 183 | 202 | 220 | 261 | 339 | | 50 | | | | | | | | | 78
144 | 85
157 | 94
175 | 103
194 | 112
211 | 131
250 | 169
325 | | 51 | | | | | | | | | 73
139 | 80
151 | 89
168 | 97
186 | 105
203 | 124
241 | 159
313 | | U W | | | | | | | | | 69 | 75 | 83 | 91 | 99 | 116 | 150 | | 52 | | | | | | | | | 133
65 | 145
71 | 162
79 | 179
86 | 195
93 | 231
110 | 301
142 | | | | | TANDADD | LOADTA | | S D | DOTEEL | IOIOTO I | OFFICE | | | | |---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | В | | | | BLE FOR | | | | | Foot (plf) | | | | Joist
Designation | 28K6 | 28K7 | 28K8 | 28K9 | 28K10 | 28K12 | 30K7 | 30K8 | 30K9 | 30K10 | 30K11 | 30K12 | | Depth (In.) | 28 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 30 | 30 | | Approx. Wt.
(lbs./ft.) | 8.9 | 9.2 | 9.8 | 10.5 | 11.8 | 14.5 | 9.6 | 10.0 | 10.6 | 11.9 | 13.3 | 15.0 | | Span (ft.) | | | | | | | | | | | | | | 27 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | 5-412 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | 28 | 548
541 | 550
543 | 550
543 | 550
543 | 550
543 | 550
543 | | | | | | | | 29 | 511 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 30 | 486 | 522
531 | 522
550 | 522
550 | 522
550 | 522
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | | 30 | 477
439 | 486 | 500
500 | 500 | 500 | 500
500 | 543 | 543 | 543 | 543 | 543 | 543 | | 31 | 446 | 497 | 550 | 550 | 550 | 550 | 534 | 550 | 550 | 550 | 550 | 550 | | 32 | 397
418 | 440
466 | 480
515 | 480
549 | 480
549 | 480
549 | 508
501 | 520
549 | 520
549 | 520
549 | 520
549 | 520
549 | | 24000 | 361 | 400 | 438 | 463 | 463 | 463 | 461 | 500 | 500 | 500 | 500 | 500 | | 33 | 393 | 438 | 484 | 527 | 532 | 532 | 471
420 | 520 | 532 | 532 | 532 | 532 | | 34 | 329
370 | 364
412 | 399
456 | 432
496 | 435
516 | 435
516 | 443 | 460
490 | 468
516 | 468
516 | 468
516 | 468
516 | | | 300 | 333 | 364 | 395 | 410 | 410 | 384 | 420 | 441 | 441 | 441 | 441 | | 35 | 349
275 | 389
305 | 430
333 | 468
361 | 501
389 | 501
389 | 418
351 | 462
384 | 501
415 | 501
415 | 501
415 | 501
415 | | 36 | 330 | 367 | 406 | 442 | 487 | 487 | 395 | 436 | 475 | 487 | 487 | 487 | | 37 | 252 | 280 | 306 | 332 | 366
474 | 366 | 323
373 | 353 | 383 | 392
474 | 392 | 392 | | 37 | 312
232 | 348
257 | 384
282 | 418
305 | 344 | 474
344 | 297 | 413
325 | 449
352 | 374 | 474
374 | 474
374 | | 38 | 296 | 329 | 364 | 396 | 461 | 461 | 354 | 391 | 426 | 461 | 461 | 461 | | 39 | 214
280 | 237
313 | 260
346 | 282
376 | 325
447 | 325
449 | 274
336 | 300
371 | 325
404 | 353
449 | 353
449 | 353
449 | | 33 | 198 | 219 | 240 | 260 | 306 | 308 | 253 | 277 | 300 | 333 | 333 | 333 | | 40 | 266 | 297 | 328 | 357 | 424 | 438 | 319 | 353 | 384 | 438 | 438 | 438 | | 41 | 183
253 | 203
283 | 222
312 | 241
340 | 284
404 | 291
427 | 234
303 | 256
335 | 278
365 | 315
427 | 315
427 | 315
427 | | | 170 | 189 | 206 | 224 | 263 | 277 | 217 | 238 | 258 | 300 | 300 | 300 | | 42 | 241
158 | 269
175 | 297
192 | 324
208 | 384
245 | 417
264 | 289
202 | 320
221 | 348
240 | 413
282 | 417
284 | 417
284 | | 43 | 230 | 257 | 284 | 309 | 367 | 407 | 276 | 305 | 332 | 394 | 407 | 407 | | 44 | 147 | 163 | 179 | 194 | 228 | 252 | 188 | 206 | 223 | 263 | 270 | 270 | | 44 | 220
137 | 245
152 | 271
167 | 295
181 | 350
212 | 398
240 | 263
176 | 291
192 | 317
208 | 376
245 | 398
258 | 398
258 | | 45 | 210 | 234 | 259 | 282 | 334 | 389 | 251 | 278 | 303 | 359
 389 | 389 | | 46 | 128
201 | 142
224 | 156
248 | 169
270 | 198
320 | 229
380 | 164
241 | 179
266 | 195
290 | 229
344 | 246
380 | 246
380 | | | 120 | 133 | 146 | 158 | 186 | 219 | 153 | 168 | 182 | 214 | 236 | 236 | | 47 | 192
112 | 214
125 | 237
136 | 258
148 | 306
174 | 372
210 | 230
144 | 255
157 | 277
171 | 329
201 | 372
226 | 372
226 | | 48 | 184 | 206 | 227 | 247 | 294 | 365 | 221 | 244 | 266 | 315 | 362 | 365 | | 40 | 105 | 117 | 128 | 139 | 163 | 201 | 135 | 148 | 160 | 188 | 215 | 216 | | 49 | 177
99 | 197
110 | 218
120 | 237
130 | 282
153 | 357
193 | 212
127 | 234
139 | 255
150 | 303
177 | 347
202 | 357
207 | | 50 | 170 | 189 | 209 | 228 | 270 | 350 | 203 | 225 | 245 | 291 | 333 | 350 | | 51 | 93
163 | 103
182 | 113
201 | 123
219 | 144
260 | 185
338 | 119
195 | 130
216 | 141
235 | 166
279 | 190
320 | 199
343 | | VI | 88 | 97 | 106 | 115 | 136 | 175 | 112 | 123 | 133 | 157 | 179 | 192 | | 52 | 157 | 175
92 | 193 | 210 | 250 | 325 | 188 | 208 | 226 | 268
148 | 308 | 336 | | 53 | 83
151 | 168 | 100
186 | 109
203 | 128
240 | 165
313 | 106
181 | 116
200 | 126
218 | 258 | 169
296 | 184
330 | | | 78 | 87 | 95 | 103 | 121 | 156 | 100 | 109 | 119 | 140 | 159 | 177 | | 54 | 145
74 | 162
82 | 179
89 | 195
97 | 232
114 | 301
147 | 174
94 | 192
103 | 209
112 | 249
132 | 285
150 | 324
170 | | 55 | 140 | 156 | 173 | 188 | 223 | 290 | 168 | 185 | 202 | 240 | 275 | 312 | | 56 | 70
135 | 77
151 | 85
166 | 92
181 | 108
215 | 139
280 | 89
162 | 98
179 | 106
195 | 125
231 | 142
265 | 161
301 | | 96 | 135
66 | 73 | 80 | 181
87 | 102 | 132 | 162
84 | 92 | 195 | 118 | 135 | 301
153 | | 57 | | | | | | | 156 | 173 | 188 | 223 | 256 | 290 | | 58 | | | | | | | 80
151 | 88
167 | 95
181 | 112
215 | 128
247 | 145
280 | | 2-6/36 | | | | | | | 76 | 83 | 90 | 106 | 121 | 137 | | 59 | | | | | | | 146
72 | 161
79 | 175
86 | 208
101 | 239
115 | 271
130 | | 60 | | | | | | | 141 | 156 | 169 | 201 | 231 | 262 | | necount \$10 | | | | | | | 69 | 75 | 81 | 96 | 109 | 124 | # STANDARD LRFD LOAD TABLE #### FOR KCS JOISTS Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 The figures in the following table give the Moment Capacity (kip-in.) and Shear Capacity (lbs). The maximum uniformly distributed load capacity in LRFD shall not exceed 825 plf and a single concentrated load cannot exceed the shear capacity. Sloped parallel-chord KCS Joists shall use the appropriate moment and shear capacity for the span as defined by the length along the slope. The approximate KCS Joist weights per linear foot shown in this table do not include accessories. The KCS Joist designation is not used to establish bridging requirements. The Bridging Table Section Numbers given in the KCS Standard Load Table indicate the equivalent K-Series joist of the same depth to be used for determination of the number of bridging rows, the size of horizontal bridging, and the need for erection stability bridging. While the need for erection stability bridging (diagonal bridging with bolted connections at the chords and intersections), can be determined from the RED shaded portion of the Standard Load Table, Open Web Steel Joists, K-Series, for convenience the KCS Load Table also includes a column for erection stability bridging. Where the span of the KCS Joist designation exceeds the length in ft. listed, the row of bridging nearest the joist midspan shall be erection stability bridging. Where "NA" is listed in the column, the KCS Joist designation does not require bolted diagonal erection bridging regardless of span. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joists and Joist Girders. | ; | STANDARD | LOAD TAI | BLE FOR K | CS OPEN | WEB STEEL | JOISTS | | |----------------------|----------------|-------------------------------|-----------------------------|----------------------------------|---|--|--| | | В | ased on a | 50 ksi Max | imum Yiel | d Strength | | | | JOIST
DESIGNATION | DEPTH
(in.) | MOMENT
CAPACITY
(k-in.) | SHEAR
CAPACITY*
(lbs) | APPROX.
WEIGHT**
(lbs/ft.) | GROSS
MOMENT OF
INERTIA
(in.4) | ERECTION
STABILITY
BRIDGING
REQ'D (ft.) | BRIDGING
TABLE
SECTION
NUMBER | | 10KCS1 | 10 | 258 | 3000 | 6.0 | 29 | NA | 1 | | 10KCS2 | 10 | 337 | 3750 | 7.5 | 37 | NA | 1 | | 10KCS3 | 10 | 444 | 4500 | 10.0 | 47 | NA | 1 | | 12KCS1 | 12 | 313 | 3600 | 6.0 | 43 | NA | 3 | | 12KCS2 | 12 | 411 | 4500 | 8.0 | 55 | NA | 5 | | 12KCS3 | 12 | 543 | 5250 | 10.0 | 71 | NA | 5 | | 14KCS1 | 14 | 370 | 4350 | 6.5 | 59 | NA | 4 | | 14KCS2 | 14 | 486 | 5100 | 8.0 | 77 | NA | 6 | | 14KCS3 | 14 | 642 | 5850 | 10.0 | 99 | NA | 6 | | 16KCS2 | 16 | 523 | 6000 | 8.5 | 99 | NA | 6 | | 16KCS3 | 16 | 705 | 7200 | 10.5 | 128 | NA | 9 | | 16KCS4 | 16 | 1080 | 7950 | 14.5 | 192 | NA | 9 | | 16KCS5 | 16 | 1401 | 8700 | 18.0 | 245 | NA | 9 | | 18KCS2 | 18 | 592 | 7050 | 9.0 | 127 | 35-0 | 6 | | 18KCS3 | 18 | 798 | 7800 | 11.0 | 164 | NA | 9 | | 18KCS4 | 18 | 1225 | 8550 | 15.0 | 247 | NA | 10 | | 18KCS5 | 18 | 1593 | 9300 | 18.5 | 316 | NA | 10 | | 20KCS2 | 20 | 663 | 7800 | 9.5 | 159 | 36-0 | 6 | | 20KCS3 | 20 | 892 | 9000 | 11.5 | 205 | 39-0 | 9 | | 20KCS4 | 20 | 1371 | 11850 | 16.5 | 308 | NA | 10 | | 20KCS5 | 20 | 1786 | 12600 | 20.0 | 396 | NA | 10 | | 22KCS2 | 22 | 732 | 8850 | 10.0 | 194 | 36-0 | 6 | | 22KCS3 | 22 | 987 | 9900 | 12.5 | 251 | 40-0 | 9 | | 22KCS4 | 22 | 1518 | 11850 | 16.5 | 377 | NA | 11 | | 22KCS5 | 22 | 1978 | 12900 | 20.5 | 485 | NA | 11 | | 24KCS2 | 24 | 801 | 9450 | 10.0 | 232 | 39-0 | 6 | | 24KCS3 | 24 | 1080 | 10800 | 12.5 | 301 | 44-0 | 9 | | 24KCS4 | 24 | 1662 | 12600 | 16.5 | 453 | NA | 12 | | 24KCS5 | 24 | 2172 | 13350 | 20.5 | 584 | NA | 12 | | 26KCS2 | 26 | 870 | 9900 | 10.0 | 274 | 39-0 | 6 | | 26KCS3 | 26 | 1174 | 11700 | 12.5 | 355 | 44-0 | 9 | | 26KCS4 | 26 | 1809 | 12750 | 16.5 | 536 | NA | 12 | | 26KCS5 | 26 | 2364 | 13800 | 20.5 | 691 | NA | 12 | | 28KCS2 | 28 | 939 | 10350 | 10.5 | 320 | 40-0 | 6 | | 28KCS3 | 28 | 1269 | 12000 | 12.5 | 414 | 45-0 | 9 | | 28KCS4 | 28 | 1954 | 12750 | 16.5 | 626 | 53-0 | 12 | | 28KCS5 | 28 | 2556 | 13800 | 20.5 | 808 | 53-0 | 12 | | 30KCS3 | 30 | 1362 | 12000 | 13.0 | 478 | 45-0 | 9 | | 30KCS4 | 30 | 2100 | 12750 | 16.5 | 722 | 54-0 | 12 | | 30KCS5 | 30 | 2749 | 13800 | 21.0 | 934 | 54-0 | 12 | | 10.1000 | 1 0 / 0 / | | | | | | | ^{*}Maximum uniformly distributed load capacity is 825 plf and single concentrated load cannot exceed shear capacity **Does not include accessories # STANDARD ASD LOAD TABLE ## FOR KCS JOISTS Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 2, 1994 Revised to May 18, 2010 – Effective December 31, 2010 The figures in the following table give the Moment Capacity (kip-in.) and Shear Capacity (lbs). The maximum uniformly distributed load capacity in ASD shall not exceed 550 plf and a single concentrated load cannot exceed the shear capacity. Sloped parallel-chord KCS Joists shall use the appropriate moment and shear capacity for the span as defined by the length along the slope. The approximate KCS Joist weights per linear foot shown in the table do not include accessories. The KCS Joist designation is not used to establish bridging requirements. The Bridging Table Section Numbers given in the KCS Standard Load Table indicate the equivalent K-Series joist of the same depth to be used for determination of the number of bridging rows, the size of horizontal bridging, and the need for erection stability bridging. While the need for erection stability bridging (diagonal bridging with bolted connections at the chords and intersections), can be determined from the RED shaded portion of the Standard Load Table, Open Web Steel Joists, K-Series, for convenience the KCS Load Table also includes a column for erection stability bridging. Where the span of the KCS Joist designation exceeds the length in ft. listed, the row of bridging nearest the joist midspan shall be erection stability bridging. Where "NA" is listed in the column, the KCS Joist designation does not require bolted diagonal erection bridging regardless of span. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joists and Joist Girders. | | S | TANDARD | LOAD TAE | BLE FOR K | CS OPEN | WEB STEEL | JOISTS | | |---|----------------------|----------------|-------------------------------|-----------------------------|----------------------------------|---|--|--| | | | В | ased on a | 50 ksi Max | imum Yiel | d Strength | | | | | JOIST
DESIGNATION | DEPTH
(in.) | MOMENT
CAPACITY
(k-in.) | SHEAR
CAPACITY*
(lbs) | APPROX.
WEIGHT**
(lbs/ft.) | GROSS
MOMENT OF
INERTIA
(in ⁴) | ERECTION
STABILITY
BRIDGING
REQ'D (ft.) | BRIDGING
TABLE
SECTION
NUMBER | | ľ | 10KCS1 | 10 | 172 | 2000 | 6.0 | 29 | NA | 1 | | | 10KCS2 | 10 | 225 | 2500 | 7.5 | 37 | NA | 1 | | | 10KCS3 | 10 | 296 | 3000 | 10.0 | 47 | NA | 1 | | | 12KCS1 | 12 | 209 | 2400 | 6.0 | 43 | NA | 3 | | | 12KCS2 | 12 | 274 | 3000 | 8.0 | 55 | NA | 5 | | | 12KCS3 | 12 | 362 | 3500 | 10.0 | 71 | NA | 5 | | | 14KCS1 | 14 | 247 | 2900 | 6.5 | 59 | NA | 4 | | | 14KCS2 | 14 | 324 | 3400 | 8.0 | 77 | NA | 6 | | | 14KCS3 | 14 | 428 | 3900 | 10.0 | 99 | NA | 6 | | | 16KCS2 | 16 | 349 | 4000 | 8.5 |
99 | NA | 6 | | | 16KCS3 | 16 | 470 | 4800 | 10.5 | 128 | NA | 9 | | | 16KCS4 | 16 | 720 | 5300 | 14.5 | 192 | NA | 9 | | | 16KCS5 | 16 | 934 | 5800 | 18.0 | 245 | NA | 9 | | | 18KCS2 | 18 | 395 | 4700 | 9.0 | 127 | 35-0 | 6 | | | 18KCS3 | 18 | 532 | 5200 | 11.0 | 164 | NA | 9 | | | 18KCS4 | 18 | 817 | 5700 | 15.0 | 247 | NA | 10 | | | 18KCS5 | 18 | 1062 | 6200 | 18.5 | 316 | NA | 10 | | | 20KCS2 | 20 | 442 | 5200 | 9.5 | 159 | 36-0 | 6 | | | 20KCS3 | 20 | 595 | 6000 | 11.5 | 205 | 39-0 | 9 | | | 20KCS4 | 20 | 914 | 7900 | 16.5 | 308 | NA | 10 | | | 20KCS5 | 20 | 1191 | 8400 | 20.0 | 396 | NA | 10 | | | 22KCS2 | 22 | 488 | 5900 | 10.0 | 194 | 36-0 | 6 | | | 22KCS3 | 22 | 658 | 6600 | 12.5 | 251 | 40-0 | 9 | | | 22KCS4 | 22 | 1012 | 7900 | 16.5 | 377 | NA | 11 | | | 22KCS5 | 22 | 1319 | 8600 | 20.5 | 485 | NA | 11 | | | 24KCS2 | 24 | 534 | 6300 | 10.0 | 232 | 39-0 | 6 | | | 24KCS3 | 24 | 720 | 7200 | 12.5 | 301 | 44-0 | 9 | | | 24KCS4 | 24 | 1108 | 8400 | 16.5 | 453 | NA | 12 | | | 24KCS5 | 24 | 1448 | 8900 | 20.5 | 584 | NA | 12 | | | 26KCS2 | 26 | 580 | 6600 | 10.0 | 274 | 39-0 | 6 | | | 26KCS3 | 26 | 783 | 7800 | 12.5 | 355 | 44-0 | 9 | | | 26KCS4 | 26 | 1206 | 8500 | 16.5 | 536 | NA | 12 | | | 26KCS5 | 26 | 1576 | 9200 | 20.5 | 691 | NA | 12 | | | 28KCS2 | 28 | 626 | 6900 | 10.5 | 320 | 40-0 | 6 | | | 28KCS3 | 28 | 846 | 8000 | 12.5 | 414 | 45-0 | 9 | | | 28KCS4 | 28 | 1303 | 8500 | 16.5 | 626 | 53-0 | 12 | | | 28KCS5 | 28 | 1704 | 9200 | 20.5 | 808 | 53-0 | 12 | | | 30KCS3 | 30 | 908 | 8000 | 13.0 | 478 | 45-0 | 9 | | | 30KCS4 | 30 | 1400 | 8500 | 16.5 | 722 | 54-0 | 12 | | | 30KCS5 | 30 | 1833 | 9200 | 21.0 | 934 | 54-0 | 12 | ^{*}Maximum uniformly distributed load capacity is 550 plf and single concentrated load cannot exceed shear capacity ^{**}Does not include accessories # **ECONOMY LOAD TABLES** ## **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute November 4, 1985 Revised to May 18, 2010 – Effective December 31, 2010 The tables on the following pages are provided as an aid to the designer in selecting the most economical **K**-Series Joists for the loads and spans required. Although considerable care has been taken in developing this chart, it must be realized that each joist manufacturer has his own unique cost; consequently, the Steel Joist Institute cannot guaranty the accuracy of this Table. The K-Series Joists are arranged in accordance with their weight per foot; where two or more joists weigh the same, they are arranged according to their depth. To utilize these tables, determine the span (ft) and load (plf) required; go to the required span in the left hand column, then read across until a load equal to or greater than the required load is reached. The first joist that satisfies this loading is the most economical joist for those conditions. If this joist is too deep or too shallow, or does not satisfy the deflection limitations, continue on horizontally to the right until a joist is found that satisfies the depth requirements as well as the load and deflection requirements. #### **ASD EXAMPLE:** Floor joists @ 2'-6" on center, supporting a structural concrete slab. (Section 5.9 of the **K-**Series Specifications limits the deflection due to the design live load to 1/360 of the span). Span = 30'- 0" Maximum joist depth allowed = 20" DL = 48 psf (includes joist weight) <u>LL = 100 psf</u> TL = 148 psf > $W_{TL} = 148 \times 2.5 = 370 \text{ plf}$ $W_{LL} = 100 \times 2.5 = 250 \text{ plf}$ A 22K6 at a span of 30 feet can carry 371 plf of Total Load and possesses a RED figure of 266 plf (RED figure load produces a deflection of approximately 1/360 of span). However, it exceeds the maximum depth limitation of 20 inches. A 20K7 fulfills the Total Load requirement but possesses a RED figure of only 242 plf. It is then found that a 20K9 is the most economical joist that satisfies all the requirements of Total Load, Live Load deflection, and maximum depth limitation. Where the joist span exceeds the unshaded area of the table, the row of bridging nearest the midspan shall be diagonal bridging with bolted connections at chords and midspan. #### LRFD EXAMPLE: Floor joists @ 2'-6" on center, supporting a structural concrete slab. (Section 5.9 of the K-Series Specifications limits the deflection due to the design live load to 1/360 of the span). Span = 30'- 0" Load factors per ASCE 7-Minimum Design Loads for Buildings and Other Structures Maximum joist depth allowed = 20" Factored DL = $48 \times 1.2 = 58$ psf (includes joist weight) Factored LL = $100 \times 1.6 = 160$ psf Factored TL = 218 psf > Factored $W_{TL} = 218 \times 2.5 = 545 \text{ plf}$ Unfactored $W_{LL} = 100 \times 2.5 = 250 \text{ plf}$ A 22K6 at a span of 30 feet can carry 566 plf of Factored Total Load and possesses a RED figure of 266 plf (RED figure load produces a deflection of approximately of 1/360 of span). However, it exceeds the maximum depth limitation of 20 inches. A 20K7 fulfills the Factored Total Load requirement but possesses a RED figure of only 242 plf. It is then found that a 20K9 is the most economical joist that satisfies all the requirements of Factored Total Load, Live Load deflection, and maximum depth limitation. Where the joist span exceeds the unshaded area of the table, the row of bridging nearest the midspan shall be diagonal bridging with bolted connections at chords and midspan. | | | | | | | ANNO SERVICE SERVICE | <u> </u> | money of transfer | | | | | | | | | |--------------------------|------------|------------|------------|------------|------------|----------------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | | LRI | FD K-SE | RIES E | CONOM | TABL | - STAN | NDARD | UNITS | 1 | | | | | | Joist
Designation | 10K1 | 12K1 | 14K1 | 16K2 | 12K3 | 14K3 | 16K3 | 18K3 | 20K3 | 14K4 | 16K4 | 12K5 | 18K4 | 20K4 | 22K4 | 16K5 | | Depth (In.) | 10 | 12 | 14 | 16 | 12 | 14 | 16 | 18 | 20 | 14 | 16 | 12 | 18 | 20 | 22 | 16 | | Approx. Wt.
(lbs./ft) | 5.0 | 5.0 | 5.2 | 5.5 | 5.7 | 6.0 | 6.3 | 6.4 | 6.5 | 6.7 | 7.0 | 7.1 | 7.2 | 7.2 | 7.3 | 7.5 | | Span (ft) | | | | | | | | | | | | | | | | | | 10 | 825 | | | | | | | | | | | | | | | | | 11 | 550
825 | | | | | | | | | | | | | | | | | 200000 | 542 | | | | | | | | | | | | | | | | | 12 | 825
455 | 825
550 | | | 825
550 | | | | | | | 825
550 | | | | | | 13 | 718 | 825 | | | 825 | | | | | | | 825 | | | | | | 14 | 363
618 | 510
750 | 825 | | 510
825 | 825 | | | | 825 | | 510
825 | | | | | | 15 | 289
537 | 425
651 | 550
766 | | 463
814 | 550
825 | | | | 550
825 | | 463
825 | | | | | | | 234 | 344 | 475 | | 428 | 507 | | | | 507 | | 434 | | | | | | 16 | 469
192 | 570
282 | 672
390 | 825
550 | 714
351 | 825
467 | 825
550 | | | 825
467 | 825
550 | 825
396 | | | | 825
550 | | 17 | 415 | 504 | 592 | 768 | 630 | 742 | 825 | | | 825 | 825 | 825 | | | | 825 | | 18 | 159
369 | 234
448 | 324
528 | 488
684 | 291
561 | 404
661 | 526
762 | 825 | | 443
795 | 526
825 | 366
760 | 825 | | | 526
825 | | 19 | 134 | 197 | 272 | 409 | 245 | 339 | 456 | 550 | 905 | 397 | 490 | 317 | 550 | 905 | | 490 | | | 331
113 | 402
167 | 472
230 | 612
347 | 502
207 | 592
287 | 682
386 | 771
494 | 825
550 | 712
336 | 820
452 | 681
269 | 825
523 | 825
550 | | 825
455 | | 20 | 298
97 | 361
142 | 426
197 | 552
297 | 453
177 | 534
246 | 615
330 | 694
423 | 775
517 | 642
287 | 739
386 | 613
230 | 825
490 | 825
550 | | 825
426 | | 21 | 51 | 327 | 385 | 499 | 409 | 483 | 556 | 630 | 702 | 582 | 670 | 555 | 759 | 825 | 825 | 754 | | 22 | | 123
298 | 170
351 | 255
454 | 153
373 | 212
439 | 285
505 | 364
573 | 453
639 | 248
529 | 333
609 | 198
505 | 426
690 | 520
771 | 550
825 | 373
687 | | 44-25-10 | | 106 | 147 | 222 | 132 | 184 | 247 | 316 | 393 | 215 | 289 | 172 | 370 | 461 | 548 | 323 | | 23 | | 271
93 | 321
128 | 415
194 | 340
116 | 402
160 | 462
216 | 523
276 | 583
344 | 483
188 | 556
252 | 462
150 | 630
323 | 703
402 | 777
491 | 627
282 | | 24 | | 249 | 294 | 381 | 312 | 367 | 424 | 480 | 535 | 442 | 510 | 423 | 577 | 645 | 712 | 576 | | 25 | | 81 | 113
270 | 170
351 | 101 | 141
339 | 189
390 | 242
441 | 302
493 | 165
408 | 221
469 | 132 | 284
532 | 353
594 | 431
657 | 248
529 | | 26 | | | 100
249 | 150
324 | | 124
313 | 167
360 | 214
408 | 266
456 | 145
376 | 195
433 | | 250
492 | 312
549 | 381
606 | 219
489 | | | | | 88 | 133 | | 110 | 148 | 190 | 236 | 129 | 173 | | 222 | 277 | 338 | 194 | | 27 | | | 231
79 | 300
119 | | 289
98 | 334
132 | 378
169 | 421
211 | 349
115 | 402
155 | | 454
198 | 508
247 | 561
301 | 453
173 | | 28 | | | 214 | 279 | | 270 | 310 | 351 | 391 | 324 | 373 | | 423 | 472 | 522 | 421 | | 29 | | | 70 | 106
259 | | 88 | 118
289 | 151
327 | 189
364 | 103 | 138
232 | | 177
394 | 221
439 | 270
486 | 155
391 | | 30 | | | | 95 | | | 106 | 136
304 | 170
340 | | 124 | | 159
367 | 199
411 | 242
453 | 139
366 | | | | | | 241
86 | | | 270
96 | 123 | 153 | | 216
112 | | 144 | 179 | 219 | 126 | | 31 | | | | 226
78 | | | 252
87 | 285
111 | 318
138 | | 203
101 | | 343
130 | 384
162 | 424
198 | 342
114 | | 32 | | | | 213 | | | 237 | 267 | 298 | | 190 | | 322 | 360 | 397 | 321 | | 33 | | | | 71 | | | 79 | 101
252 | 126
280 | | 92 | | 118
303 | 147
339 | 180
373 | 103 | | 34 | | | | | | | | 92 | 114 | | | | 108 | 134 | 164 | | | 2000 | | | | | | | | 237
84 | 264
105 | | | | 285
98 | 318
122 | 352
149 | | | 35 | | | | | | | |
223
77 | 249
96 | | | | 268
90 | 300
112 | 331
137 | | | 36 | | | | | | | | 211 | 235 | | | | 253 | 283 | 313 | | | 37 | | | | | | | | 70 | 88
222 | | | | 82 | 103
268 | 126
297 | | | | | | | | | | | | 81 | | | | | 95 | 116 | | | 38 | | | | | | | | | 211
74 | | | | | 255
87 | 280
107 | | | 39 | | | | | | | | | 199
69 | | | | | 241
81 | 267
98 | | | 40 | | | | | | | | | 190 | | | | | 229 | 253 | | | 41 | | | | | | | | | 64 | | | | | 75 | 91
241 | | | | | | | | | | | | | | | | | | 85 | | | 42 | | | | | | | | | | | | | | | 229
79 | | | 43 | | | | | | | | | | | | | | | 219 | | | 44 | | | | | | | | | | | | | | | 73
208 | | | | | | | | | | | | | | | | | | 68 | | | | | | | LRE | D K-SE | | | / TARI F | E - STAN | IDARDI | INITS | | | | | | |----------------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Joist | 4.4460 | 401/5 | 001/5 | | | | | | | | | 0.4140 | 401/7 | 001/0 | 101/7 | 001/7 | | Designation | 14K6 | 18K5 | 20K5 | 22K5 | 24K4 | 24K5 | 16K6 | 26K5 | 18K6 | 20K6 | 22K6 | 24K6 | 16K7 | 26K6 | 18K7 | 20K7 | | Depth (In).
Approx. Wt. | 7.7 | 18
7.7 | 20
7.7 | 7.7 | 24
7.8 | 24
7.9 | 16
8.1 | 26
8.1 | 18
8.4 | 20
8.4 | 22
8.5 | 24
8.5 | 16
8.6 | 26
8.6 | 18
8.9 | 20
8.9 | | (lbs./ft)
Span (ft) | 1.1 | 1.1 | 1.1 | 1.1 | 7.0 | 7.5 | 0.1 | 0.1 | 0.4 | 0.4 | 0.5 | 6.5 | 8.0 | 0.0 | 0.9 | 0.9 | | 2 (5.35) | | | | | | | | | | | | | | | | | | 14 | 825
550 | | | | | | | | | | | | | | | | | 15 | 825
507 | | | | | | | | | | | | | | | | | 16 | 825 | | | | | | 825 | | | | | | 825 | | | | | 17 | 467
825 | | | | | | 550
825 | | | | | | 550
825 | | | | | 18 | 443 | 205 | | | | | 526 | | 205 | | | | 526 | | 205 | | | | 825
408 | 825
550 | | | | | 825
490 | | 825
550 | | | | 825
490 | | 825
550 | | | 19 | 825
383 | 825
523 | 825
550 | | | | 825
455 | | 825
523 | 825
550 | | | 825
455 | | 825
523 | 825
550 | | 20 | 787 | 825 | 825 | | | | 825 | | 825 | 825 | | | 825 | | 825 | 825 | | 21 | 712 | 490
825 | 550
825 | 825 | | | 426
822 | | 490
825 | 550
825 | 825 | | 426
825 | | 490
825 | 550
825 | | 22 | 299
648 | 460
777 | 520
825 | 550
825 | | | 405
747 | | 460
825 | 520
825 | 550
825 | | 406
825 | | 460
825 | 520
825 | | | 259 | 414 | 490 | 548 | a c= | | 351 | | 438 | 490 | 548 | | 385 | | 438 | 490 | | 23 | 592
226 | 709
362 | 793
451 | 825
518 | 825
550 | 825
550 | 682
307 | | 774
393 | 825
468 | 825
518 | 825
550 | 760
339 | | 825
418 | 825
468 | | 24 | 543
199 | 651
318 | 727
396 | 804
483 | 780
516 | 825
544 | 627
269 | | 709
345 | 792
430 | 825
495 | 825
544 | 697
298 | | 789
382 | 825
448 | | 25 | 501 | 600 | 669 | 739 | 718 | 810 | 576 | 825 | 652 | 729 | 805 | 825 | 642 | 825 | 727 | 811 | | 26 | 175
462 | 281
553 | 350
618 | 427
682 | 456
663 | 511
748 | 238
532 | 550
813 | 305
603 | 380
673 | 464
744 | 520
814 | 263
592 | 550
825 | 337
672 | 421
750 | | 27 | 156
427 | 249
513 | 310
573 | 379
633 | 405
615 | 453
693 | 211
493 | 535
753 | 271
558 | 337
624 | 411
688 | 493
754 | 233
549 | 541
820 | 299
622 | 373
694 | | | 139 | 222 | 277 | 337 | 361 | 404 | 188 | 477 | 241 | 301 | 367 | 439 | 208 | 519 | 267 | 333 | | 28 | 397
124 | 477
199 | 532
248 | 588
302 | 571
323 | 643
362 | 459
168 | 699
427 | 519
216 | 579
269 | 640
328 | 700
393 | 510
186 | 762
464 | 577
239 | 645
298 | | 29 | | 444 | 495 | 547 | 531 | 600 | 427 | 651 | 483 | 540 | 597 | 652 | 475 | 709 | 538 | 601 | | 30 | | 179
414 | 223
462 | 272
511 | 290
496 | 325
559 | 151
399 | 384
607 | 194
451 | 504 | 295
556 | 354
609 | 167
444 | 417
661 | 215
502 | 268
561 | | 31 | | 161
387 | 201
433 | 245
478 | 262
465 | 293
523 | 137
373 | 346
568 | 175
421 | 218
471 | 266
520 | 319
570 | 151
415 | 377
619 | 194
469 | 242
525 | | | | 146 | 182 | 222 | 237 | 266 | 124 | 314 | 158 | 198 | 241 | 289 | 137 | 341 | 175 | 219 | | 32 | | 363
132 | 406
165 | 448
201 | 435
215 | 490
241 | 349
112 | 534
285 | 396
144 | 442
179 | 489
219 | 535
262 | 388
124 | 580
309 | 441
159 | 492
199 | | 33 | | 342
121 | 381
150 | 421
183 | 409
196 | 462
220 | | 501
259 | 248
131 | 415
163 | 459
199 | 502
239 | | 546
282 | 414
145 | 463
181 | | 34 | | 321 | 358 | 397 | 385 | 435 | | 472 | 233 | 391 | 432 | 472 | | 514 | 390 | 435 | | 35 | | 110
303 | 137
339 | 167
373 | 179
363 | 201
409 | | 237
445 | 120
330 | 149
369 | 182
408 | 218
445 | | 257
484 | 132
367 | 165
411 | | 36 | | 101
286 | 126
319 | 153
354 | 164
343 | 184
387 | | 217
420 | 110
312 | 137
348 | 167
385 | 200
421 | | 236
457 | 121
348 | 151
388 | | | | 92 | 115 | 141 | 150 | 169 | | 199 | 101 | 125 | 153 | 183 | | 216 | 111 | 139 | | 37 | | | 303
106 | 334
130 | 324
138 | 366
155 | | 397
183 | | 330
115 | 364
141 | 399
169 | | 433
199 | | 367
128 | | 38 | | | 286
98 | 316
119 | 307
128 | 346
143 | | 376
169 | | 312
106 | 345
130 | 378
156 | | 411
184 | | 348
118 | | 39 | | | 271 | 300 | 292 | 328 | | 357 | | 297 | 327 | 358 | | 390 | | 330 | | 40 | | | 90
258 | 110
285 | 118
277 | 132
312 | | 156
340 | | 282 | 310 | 340 | | 170
370 | | 109
313 | | 41 | | | 84 | 102
271 | 109
264 | 122
297 | | 145
322 | | 91 | 111
295 | 133
324 | | 157
352 | | 101 | | | | | | 95 | 101 | 114 | | 134 | | | 103 | 124 | | 146 | | | | 42 | | | | 259
88 | 252
94 | 283
106 | | 307
125 | | | 282
96 | 309
115 | | 336
136 | | | | 43 | | | | 247
82 | 240
88 | 270
98 | | 294
116 | | | 268
89 | 294
107 | | 319
126 | | | | 44 | | | | 235 | 229 | 258 | | 280 | | | 256 | 280 | | 306 | | | | 45 | | | | 76 | 82
219 | 92
246 | | 108
268 | | | 83 | 100
268 | | 118
291 | | | | 46 | | | | | 76
208 | 86
235 | | 101
256 | | | | 93
256 | | 110
279 | | | | | | | | | 71 | 80 | | 95 | | | | 87 | | 103 | | | | 47 | | | | | 199
67 | 225
75 | | 246
89 | | | | 246
82 | | 267
96 | | | | 48 | | | | | 192 | 216 | | 235 | | | | 235 | | 256 | | | | 49 | | | | | 63 | 70 | | 83
225 | | | | 77 | | 90
246 | | | | 50 | | | | | | | | 78
216 | | | | | | 85
235 | | | | | | | | | | | | 73 | | | | | | 80 | | | | 51 | | | | | | | | 208
69 | | | | | | 226
75 | | | | 52 | | | | | | | | 199
65 | | | | | | 217
71 | | | | | | | | | |) [| | 4 2 | D | | | | | | | | |--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | | LR | FD K-SE | RIES E | CONOM | Y TABL | E - STAN | IDARD | UNITS | | | | | | | Joist
Designation | 28K6 | 22K7 | 24K7 | 26K7 | 28K7 | 24K8 | 30K7 | 26K8 | 28K8 | 16K9 | 30K8 | 18K9 | 20K9 | 22K9 | 24K9 | 26K9 | | Depth (In). | 28 | 22 | 24 | 26 | 28 | 24 | 30 | 26 | 28 | 16 | 30 | 18 | 20 | 22 | 24 | 26 | | Approx. Wt
(lbs./ft.) | 8.9 | 9.0 | 9.0 | 9.0 | 9.2 | 9.4 | 9.6 | 9.7 | 9.8 | 10.0 | 10.0 | 10.1 | 10.1 | 10.2 | 10.3 | 10.4 | | Span (ft.) | | | | | | | | | | | | | | | | | | 16 | | | | | | | | | | 825
550 | | | | | | | | 17 | | | | | | | | | | 825
526 | | | | | | | | 18 | | | | | | | | | | 825
490 | | 825
550 | | | | | | 19 | | | | | | | | | | 825
455 | | 825
523 | 825 | | | | | 20 | | | | | | | | | | 825 | | 825 | 825 | | | | | 21 | | 825 | | | | | | | | 426
825 | | 490
825 | 550
825 | 825 | | | | 22 | | 550
825 | | | | | | | | 406
825 | | 460
825 | 520
825 | 550
825 | | | | 23 | | 548
825 | 825 | | | 825 | | | | 385
825 | | 438
825 | 490
825 | 548
825 | 825 | | | N-1000 | | 518 | 550 | | | 550 | | | | 363 | | 418 | 468 | 518 | 550 | | | 24 | | 825
495 | 825
544 | | | 825
544 | | | | 825
346 | | 825
396 | 825
448 | 825
495 | 825
544 | | | 25 | | 825
474 | 825
520 | 825
550 | | 825
520 | | 825
550 | | 771
311 | | 825
377 | 825
426 | 825
474 | 825
520 | 825
550 | | 26 | | 825
454 | 825
499 | 825
541 | | 825
499 | | 825
541 | | 711
276 | | 807
354 | 825
405 | 825
454 | 825
499 | 825
541 | | 27 | 825 | 768 | 825 | 825 | 825 | 825 | | 825 | 825 | 658 | | 747 | 825 | 825 | 825 | 825 | | 28 | 550
822 | 406
712 | 479
781 | 522
825 | 550
825 | 479
825 | | 522
825 | 550
825 | 246
612 | | 315
694 | 389
775 | 825 | 479
825 | 522
825 | | 29 | 541
766 | 364
664 | 436
727 | 501
790 | 543
825 | 456
804 | 825 | 501
825 | 543
825 | 220
570 | 825 | 282
646 | 353
723 | 413
798 | 456
825 | 501
825 | | 30 | 486
715 | 327
619 | 392
679 | 463
738 | 522
796 | 429
750 | 550
825 | 479
816 | 522
825 | 198
532 | 550
825 | 254
603 | 317
675 | 387
745 | 436
816 | 479
825 | | | 439 | 295 | 353 | 417 | 486 | 387 | 543 | 457 | 500 | 178 | 543 | 229 | 286 | 349 | 419 | 459 | | 31 | 669
397 | 580
267 | 636
320 | 690
378 | 745
440 | 702
350 | 801
508 | 763
413 | 825
480 | 498
161 | 825
520 | 564
207 | 631
259 | 697
316 | 765
379 | 825
444 | | 32 | 627
361 | 544
242 | 595
290 | 648
343 | 699
400 |
658
318 | 751
461 | 715
375 | 772
438 | 466
147 | 823
500 | 529
188 | 592
235 | 654
287 | 717
344 | 778
407 | | 33 | 589
329 | 511
221 | 559
265 | 609
312 | 657
364 | 619
289 | 706
420 | 672
342 | 726
399 | | 780
460 | 498
171 | 556
214 | 615
261 | 673
313 | 732
370 | | 34 | 555 | 481 | 526 | 573 | 618 | 582 | 664 | 633 | 684 | | 735 | 468 | 523 | 579 | 634 | 688 | | 35 | 300
523 | 202
454 | 242
496 | 285
540 | 333
583 | 264
549 | 384
627 | 312
597 | 364
645 | | 420
693 | 156
441 | 195
493 | 239
546 | 286
598 | 338
649 | | 36 | 275
495 | 185
429 | 221
469 | 261
510 | 305
550 | 242
519 | 351
592 | 286
564 | 333
609 | | 384
654 | 143
417 | 179
466 | 219
516 | 262
565 | 310
613 | | 37 | 252
468 | 169
406 | 203
444 | 240
483 | 280
522 | 222
490 | 323
559 | 263
534 | 306
576 | | 353
619 | 132 | 164
441 | 201
487 | 241
534 | 284
580 | | | 232 | 156 | 187 | 221 | 257 | 205 | 297 | 242 | 282 | | 325 | | 151 | 185 | 222 | 262 | | 38 | 444
214 | 384
144 | 421
172 | 457
204 | 493
237 | 465
189 | 531
274 | 505
223 | 546
260 | | 586
300 | | 418
139 | 462
170 | 507
204 | 550
241 | | 39 | 420
198 | 364
133 | 399
159 | 433
188 | 469
219 | 441
174 | 504
253 | 480
206 | 519
240 | | 556
277 | | 397
129 | 438
157 | 480
189 | 522
223 | | 40 | 399
183 | 346
123 | 379
148 | 412
174 | 445
203 | 420
161 | 478
234 | 456
191 | 492
222 | | 529
256 | | 376
119 | 417
146 | 456
175 | 496
207 | | 41 | 379 | 330 | 361 | 393 | 424 | 399 | 454 | 433 | 468 | | 502 | | 113 | 396 | 435 | 472 | | 42 | 170
361 | 114
313 | 137
343 | 162
373 | 189
403 | 150
379 | 217
433 | 177
412 | 206
445 | | 238
480 | | | 135
378 | 162
414 | 192
450 | | 43 | 158
345 | 106
300 | 127
328 | 150
357 | 175
385 | 139
363 | 202
414 | 164
394 | 192
426 | | 221
457 | | | 126
360 | 151
394 | 178
429 | | 44 | 147
330 | 99
286 | 118
313 | 140
340 | 163
367 | 130
346 | 188
394 | 153
376 | 179
406 | | 206
436 | | | 117
343 | 140
376 | 166
409 | | | 137 | 92 | 110 | 131 | 152 | 121 | 176 | 143 | 167 | | 192 | | | 109 | 131 | 155 | | 45 | 315
128 | | 298
103 | 325
122 | 351
142 | 330
113 | 376
164 | 360
133 | 388
156 | | 417
179 | | | | 360
122 | 391
145 | | 46 | 301
120 | | 286
97 | 310
114 | 336
133 | 316
106 | 361
153 | 343
125 | 372
146 | | 399
168 | | | | 345
114 | 375
135 | | 47 | 288
112 | | 274
90 | 298
107 | 321
125 | 303
99 | 345
144 | 328
117 | 355
136 | | 382
157 | | | | 330
107 | 358
127 | | 48 | 276
105 | | 262
85 | 285
100 | 309
117 | 291
93 | 331
135 | 315
110 | 340
128 | | 366
148 | | | | 316
101 | 343
119 | | 49 | 265 | | 30 | 274 | 295 | | 318 | 303 | 327 | | 351 | | | | 1.01 | 330 | | 50 | 99
255 | | | 94
262 | 110
283 | | 304 | 103
291 | 120
313 | | 139
337 | | | | | 112
316 | | 51 | 93
244 | | | 89
252 | 103
273 | | 119
292 | 97
279 | 113
301 | | 130
324 | | | | | 105
304 | | 52 | 88
235 | | | 83
243 | 97
262 | | 112
282 | 91
268 | 106
289 | | 123
312 | | | | | 99
292 | | 53 | 83
226 | | | 79 | 92
252 | | 106
271 | 86 | 100
279 | | 116
300 | | | | | 93 | | | 78 | | | | 87 | | 100 | | 95 | | 109 | | | | | | | 54 | 217
74 | | | | 243
82 | | 261
94 | | 268
89 | | 288
103 | | | | | | | 55 | 210
70 | | | | 234
77 | | 252
89 | | 259
85 | | 277
98 | | | | | | | 56 | 202 | | | | 226 | | 243 | | 249 | | 268 | | | | | | | 57 | 66 | | | | 73 | | 234 | | 80 | | 92
259 | | | | | | | 58 | | | | | | | 80
226 | | | | 88
250 | | | | | | | 59 | | | | | | | 76
219 | | | | 83
241 | | | | | | | 76575 | | | | | | | 72 | | | | 79 | | | | | | | 60 | | | | | | | 211
69 | | | | 234
75 | | | | | | | | | | | LRFD | K-SERII | ES ECO | NOMY T | ABLE - | STANDA | ARD UN | ITS | | | | | |----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Joist Designation | 28K9 | 30K9 | 18K10 | 20K10 | 22K10 | 24K10 | 26K10 | 28K10 | 22K11 | 30K10 | 30K11 | 24K12 | 26K12 | 28K12 | 30K12 | | Depth (In.) | 28 | 30 | 18 | 20 | 22 | 24 | 26 | 28 | 22 | 30 | 30 | 24 | 26 | 28 | 30 | | Approx. Wt. (lbs/ft) | 10.5 | 10.6 | 11.6 | 11.6 | 11.7 | 11.7 | 11.8 | 11.8 | 11.9 | 11.9 | 13.3 | 13.5 | 13.7 | 14.5 | 15.0 | | Span (ft.) | | | | | | | | | | | | | | | | | 18 | | | 825 | | | | | | | | | | | | | | 19 | | | 550
825 | 825 | | | | | | | | | | | | | 20 | | | 523
825 | 550
825 | | | | | | | | | | | | | 21 | | | 490
825 | 550
825 | 825 | | | | 825 | | | | | | | | 22 | | | 460
825 | 520
825 | 550
825 | | | | 550
825 | | | | | | | | | | | 438
825 | 490
825 | 548
825 | 825 | | | 548
825 | | | 825 | | | | | 23 | | | 418 | 468 | 518 | 550 | | | 518 | | | 550 | | | | | 24 | | | 825
396 | 825
448 | 825
495 | 825
544 | | | 825
495 | | | 825
544 | | | | | 25 | | | 825
377 | 825
426 | 825
474 | 825
520 | 825
550 | | 825
474 | | | 825
520 | 825
550 | | | | 26 | | | 825
361 | 825
405 | 825
454 | 825
499 | 825
541 | | 825
454 | | | 825
499 | 825
541 | | | | 27 | 825
550 | | 825
347 | 825
389 | 825
432 | 825
479 | 825
522 | 825
550 | 825
432 | | | 825
479 | 825
522 | 825
550 | | | 28 | 825 | | 822
331 | 825 | 825 | 825 | 825 | 825 | 825 | | | 825 | 825 | 825 | | | 29 | 543
825 | 825 | 766 | 375
825 | 825 | 456
825 | 825 | 543
825 | 413
825 | 825 | 825 | 456
825 | 825 | 543
825 | 825 | | 30 | 522
825 | 550
825 | 298
715 | 359
799 | 399
825 | 436
825 | 479
825 | 522
825 | 399
825 | 550
825 | 550
825 | 436
825 | 479
825 | 522
825 | 825 | | 31 | 500
825 | 543
825 | 269
669 | 336
748 | 385
825 | 422
825 | 459
825 | 500
825 | 385
825 | 543
825 | 543
825 | 422
825 | 459
825 | 500
825 | 543
825 | | 32 | 480
823 | 520
823 | 243
627 | 304
702 | 369
775 | 410
823 | 444
823 | 480
823 | 369
823 | 520
823 | 520
823 | 410
823 | 823 | 480
823 | 520
823 | | 33 | 463
790 | 500
798 | 221
589 | 276
660 | 337
729 | 393
798 | 431
798 | 463
798 | 355
798 | 500
798 | 500
798 | 393
798 | 431
798 | 463
798 | 500
798 | | 34 | 432
744 | 468
774 | 201
555 | 251
621 | 307
687 | 368
753 | 404
774 | 435
774 | 334
774 | 468
774 | 468
774 | 368
774 | 404
774 | 435
774 | 468
774 | | | 395
702 | 441
751 | 184
523 | 229
585 | 280
648 | 337
709 | 378
751 | 410
751 | 314
741 | 441
751 | 441
751 | 344
751 | 378
751 | 410
751 | 441
751 | | 35 | 361 | 415 | 168
495 | 210 | 257 | 308 | 356 | 389 | 292 | 415 | 415 | 324 | 356 | 389 | 415 | | 36 | 663
332 | 712
383 | 154 | 553
193 | 612
236 | 670
283 | 729
334 | 730
366 | 700
269 | 730
392 | 730
392 | 730
306 | 730
334 | 730
366 | 730
392 | | 37 | 627
305 | 673
352 | | 523
178 | 579
217 | 634
260 | 690
308 | 711
344 | 663
247 | 711
374 | 711
374 | 711
290 | 711
315 | 711
344 | 711
374 | | 38 | 594
282 | 639
325 | | 496
164 | 549
200 | 601
240 | 654
284 | 691
325 | 628
228 | 691
353 | 691
353 | 691
275 | 691
299 | 691
325 | 691
353 | | 39 | 564
260 | 606
300 | | 471
151 | 520
185 | 570
222 | 619
262 | 670
306 | 595
211 | 673
333 | 673
333 | 673
261 | 673
283 | 673
308 | 673
333 | | 40 | 535
241 | 576
278 | | 447
140 | 495
171 | 541
206 | 589
243 | 636
284 | 565
195 | 657
315 | 657
315 | 657
247 | 657
269 | 657
291 | 657
315 | | 41 | 510
224 | 547
258 | | | 471
159 | 516
191 | 561
225 | 606
263 | 538
181 | 640
300 | 640
300 | 640
235 | 640
256 | 640
277 | 640
300 | | 42 | 486
208 | 522
240 | | | 448
148 | 490
177 | 534
210 | 576
245 | 513
168 | 619
282 | 625
284 | 625
224 | 625
244 | 625
264 | 625
284 | | 43 | 463
194 | 498
223 | | | 427
138 | 468
165 | 508
195 | 550
228 | 489
157 | 591 | 610
270 | 609
213 | 610
232 | 610
252 | 610
270 | | 44 | 442 | 475 | | | 408 | 447 | 486 | 525 | 466 | 263
564 | 597 | 580 | 597 | 597 | 597
258 | | 45 | 181
423 | 208
454 | | | 128 | 154
427 | 182
465 | 501 | 146 | 538
538 | 258
583 | 199
555 | 583 | 583 | 583 | | 46 | 405 | 195
435 | | | | 408 | 170
444 | 198
480 | | 516 | 570 | 185
531 | 570 | 570 | 570 | | 47 | 158
387 | 182
415 | | | | 135
391 | 159
426 | 186
459 | | 214
493 | 236
558 | 174
508 | 203
553 | 219
558 | 236
558 | | 48 | 148
370 | 171
399 | | | | 126
375 | 149
408 | 174
441 | | 201
472 | 226
543 | 163
487 | 192
529 | 210
547 | 226
547 | | 49 | 139
355 | 160
382 | | | | 118 | 140
391 | 163
423 | | 188
454 | 215
520 | 153 | 180
508 | 201
535 | 216
535 | | 50 | 130
342 | 150
367 | | | | | 131
375 | 153
405 | | 177
436 | 202
499 | | 169
487 | 193
525 | 207
525 | | 51 | 123
328 | 141
352 | | | | | 124
361 | 144
390 | | 166
418 | 190
480 | | 159
469 | 185
507 | 199
514 | | | 115 | 133 |
 | | | 116 | 136 | | 157 | 179 | | 150 | 175 | 192 | | 52 | 315
109 | 339
126 | | | | | 346
110 | 375
128 | | 402
148 | 462
169 | | 451
142 | 487
165 | 504
184 | | 53 | 304
103 | 327
119 | | | | | | 360
121 | | 387
140 | 444
159 | | | 469
156 | 495
177 | | 54 | 292
97 | 313
112 | | | | | | 348
114 | | 373
132 | 427
150 | | | 451
147 | 486
170 | | 55 | 282
92 | 303
106 | | | | | | 334
108 | | 360
125 | 412
142 | | | 435
139 | 468
161 | | 56 | 271
87 | 292
100 | | | | | | 322
102 | | 346
118 | 397
135 | | | 420
132 | 451
153 | | 57 | | 282
95 | | | | | | | | 334
112 | 384
128 | | | | 435
145 | | 58 | | 271
90 | | | | | | | | 322
106 | 370
121 | | | | 420
137 | | 59 | | 262 | | | | | | | | 312 | 358 | | | | 406 | | 60 | | 253
24 | | | | | | | | 301
301 | 115
346 | | | | 130
393 | | | | 81 | | | | | (E) | | | 96 | 109 | | | | 124 | | | | | | AS | D K-SE | RIES EC | ONOMY | TABLE | -STAN | DARD L | JNITS | | | | | | |-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Joist | 10K1 | 12K1 | 14K1 | 16K2 | 12K3 | 14K3 | 16K3 | 18K3 | 20K3 | 14K4 | 16K4 | 12K5 | 18K4 | 20K4 | 22K4 | 16K5 | | Designation Depth (In.) | 10 | 12 | 14 | 16 | 12 | 14 | 16 | 18 | 20 | 14 | 16 | 12 | 18 | 20 | 22 | 16 | | Approx. Wt. | 5.0 | 5.0 | 5.2 | 5.5 | 5.7 | 6.0 | 6.3 | 6.4 | 6.5 | 6.7 | 7.0 | 7.1 | 7.2 | 7.2 | 7.3 | 7.5 | | (lbs./ft)
Span (ft) | 0.0 | 0.0 | 0.2 | 0.0 | 0.7 | 0.0 | 0.0 | 0.4 | 0.0 | 0.7 | 7.0 | 7.3 | 1.2 | 1.2 | 7.0 | 7.0 | | 10 | 550 | | | | | | | | | | | | | | | | | | 550 | | | | | | | | | | | | | | | | | 11 | 550
542 | | | | | | | | | | | | | | | | | 12 | 550 | 550 | | | 550 | | | | | | | 550 | | | | | | | 455 | 550 | | | 550 | | | | | | | 550 | | | | | | 13 | 479
363 | 550
510 | | | 550
510 | | | | | | | 550
510 | | | | | | 14 | 412 | 500 | 550 | | 550 | 550 | | | | 550 | | 550 | | | | | | 15 | 289
358 | 425
434 | 550
511 | | 463
543 | 550
550 | | | | 550
550 | | 463
550 | | | | | | 15 | 234 | 344 | 475 | | 428 | 507 | | | | 507 | | 434 | | | | | | 16 | 313 | 380 | 448 | 550 | 476 | 550 | 550 | | | 550 | 550 | 550 | | | | 550 | | 17 | 192
277 | 282
336 | 390
395 | 550
512 | 351
420 | 467
495 | 550
550 | | | 467
550 | 550
550 | 396
550 | | | | 550
550 | | 17 | 159 | 234 | 324 | 488 | 291 | 404 | 526 | | | 443 | 526 | 366 | | | | 526 | | 18 | 246 | 299 | 352 | 456 | 374 | 441 | 508 | 550 | | 530 | 550 | 507 | 550 | | | 550 | | 19 | 134
221 | 197
268 | 272
315 | 409
408 | 245
335 | 339
395 | 456
455 | 550
514 | 550 | 397
475 | 490
547 | 317
454 | 550
550 | 550 | | 490
550 | | | 113 | 167 | 230 | 347 | 207 | 287 | 386 | 494 | 550 | 336 | 452 | 269 | 523 | 550 | | 455 | | 20 | 199
97 | 241
142 | 284
197 | 368
297 | 302
177 | 356
246 | 410
330 | 463
423 | 517
517 | 428
287 | 493
386 | 409
230 | 550
490 | 550
550 | | 550
426 | | 21 | 51 | 218 | 257 | 333 | 273 | 322 | 371 | 423 | 468 | 388 | 447 | 370 | 506 | 550 | 550 | 503 | | | | 123 | 170 | 255 | 153 | 212 | 285 | 364 | 453 | 248 | 333 | 198 | 426 | 520 | 550 | 373 | | 22 | | 199
106 | 234
147 | 303
222 | 249
132 | 293
184 | 337
247 | 382
316 | 426
393 | 353
215 | 406
289 | 337
172 | 460
370 | 514
461 | 550
548 | 458
323 | | 23 | | 181 | 214 | 277 | 227 | 268 | 308 | 349 | 389 | 322 | 371 | 308 | 420 | 469 | 518 | 418 | | 24 | | 93 | 128 | 194 | 116 | 160 | 216 | 276 | 344 | 188 | 252 | 150 | 323 | 402 | 491 | 282 | | 24 | | 166
81 | 196
113 | 254
170 | 208
101 | 245
141 | 283
189 | 320
242 | 357
302 | 295
165 | 340
221 | 282
132 | 385
284 | 430
353 | 475
431 | 384
248 | | 25 | | | 180 | 234 | | 226 | 260 | 294 | 329 | 272 | 313 | | 355 | 396 | 438 | 353 | | 26 | | | 100
166 | 150
216 | | 124
209 | 167
240 | 214 | 266 | 145
251 | 195
289 | | 250 | 312 | 381 | 219
326 | | 26 | | | 88 | 133 | | 110 | 148 | 272
190 | 304
236 | 129 | 173 | | 328
222 | 366
277 | 404
338 | 194 | | 27 | | | 154 | 200 | | 193 | 223 | 252 | 281 | 233 | 268 | | 303 | 339 | 374 | 302 | | 28 | | | 79
143 | 119
186 | | 98
180 | 132
207 | 169
234 | 211
261 | 115
216 | 155
249 | | 198
282 | 247
315 | 301
348 | 173
281 | | 20 | | | 70 | 106 | | 88 | 118 | 151 | 189 | 103 | 138 | | 177 | 221 | 270 | 155 | | 29 | | | | 173 | | | 193 | 218 | 243 | | 232 | | 263 | 293 | 324 | 261 | | 30 | | | | 95
161 | | | 106
180 | 136
203 | 170
227 | | 124
216 | | 159
245 | 199
274 | 242
302 | 139
244 | | | | | | 86 | | | 96 | 123 | 153 | | 112 | | 144 | 179 | 219 | 126 | | 31 | | | | 151
78 | | | 168
87 | 190 | 212 | | 203
101 | | 229 | 256 | 283 | 228
114 | | 32 | | | | 142 | | | 158 | 111
178 | 138
199 | | 190 | | 130
215 | 162
240 | 198
265 | 214 | | 00 | | | | 71 | | | 79 | 101 | 126 | | 92 | | 118 | 147 | 180 | 103 | | 33 | | | | | | | | 168
92 | 187
114 | | | | 202
108 | 226
134 | 249
164 | | | 34 | | | | | | | | 158 | 176 | | | | 190 | 212 | 235 | | | 35 | | | | | | | | 84
149 | 105
166 | | | | 98
179 | 122
200 | 149
221 | | | 33 | | | | | | | | 77 | 96 | | | | 90 | 112 | 137 | | | 36 | | | | | | | | 141 | 157 | | | | 169 | 189 | 209 | | | 37 | | | | | | | | 70 | 88
148 | | | | 82 | 103
179 | 126
198 | | | | | | | | | | | | 81 | | | | | 95 | 116 | | | 38 | | | | | | | | | 141 | | | | | 170 | 187 | | | 39 | | | | | | | | | 74
133 | | | | | 87
161 | 107
178 | | | | | | | | | | | | 69 | | | | | 81 | 98 | | | 40 | | | | | | | | | 127 | | | | | 153 | 169
91 | | | 41 | | | | | | | | | 64 | | | | | 75 | 161 | | | | | | | | | | | | | | | | | | 85 | | | 42 | | | | | | | | | | | | | | | 153
79 | | | 43 | | | | | | | | | | | | | | | 146 | | | - 44 | | | | | | | | | | | | | | | 73 | | | 44 | | | | | | | | | | | | | | | 139
68 | | | | | | | | | _ | | | | | 1 | | | | 00 | | | ASD K-SERIES ECONOMY TABLE - STANDARD UNITS Joist | 18K7 | 20K7 | |--|---------------|------------| | Designation 1400 1005 2005 2205 2404 2405 1000 2005 1000 2000 2000 2200 2400 1007 2000 | ALCOUR COMMIT | 20K7 | | | | 2011 | | Depth (In). 14 18 20 22 24 24 16 26 18 20 22 24 16 26 | 18 | 20 | | Approx. Wt. (lbs./ft) 7.7 7.7 7.7 7.7 7.8 7.9 8.1 8.1 8.4 8.4 8.5 8.5 8.6 8.6 | 8.9 | 8.9 | | Span (ft) | | | | 14 550 | | | | 15 550 15 15 15 15 15 15 15 15 15 15 15 15 15 | | | | 16 550 550 550 | | | | 467 550 550 17 550 550 | | | | 443 526 526 | | | | 18 550 550 550 550 550 490 550 490 | 550
550 | | | 19 550 550 550 550 550 550 550 550 550 455 | 550
523 | 550
550 | | 20 525 550 550 550 550 550 550 550 550 426 490 550 426 | 550
490 | 550
550 | | 21 475 550 550 550 550 550 550 550 550 550 | 550 | 550 | | 299 460 520 550 405 460 520 550 406 22 432 518 550 550 498 550 550 550 550 | 460
550 | 520
550 | | 259 414 490 548 351 438 490 548 385 23 395 473 529 550 550 550 516 550 550 550 | 438
550 | 490
550 | | 226 362 451 518 550 550 307 393 468 518 550 339 24 362 434 485 536 520 550 418 473 528 550 550 465 | 418
526 | 468
550 | | 199 318 396 483 516 544 269 345 430 495 544 298 | 382 | 448 | | 25 334 400 446 493 479 540 384 550 435 486 537 550 428 550
175 281 350 427 456 511 238 550 305 380 464 520 263 550 | 485
337 | 541
421 | | 26 308 369 412 455 442 499 355 542 402 449 496 543 395 550 156 249 310 379 405 453 211 535 271 337 411 493 233 541 | 448
299 | 500
373 | | 27 285 342 382 422 410 462 329 502 372 416 459 503 366 547 | 415 | 463 | | 28 265 318 355 392 381 429 306 466 346 386 427 467 340 508 | 267
385 | 333
430 | | 124 199 248 302 323 362 168 427 216 269 328 393 186 464 29 296 330 365 354 400 285 434 322 360 398 435 317 473 | 239
359 | 298
401 | | 179 223 272 290 325 151 384 194 242 295 354 167 417 30 276 308 341 331 373 266 405 301 336 371 406 296 441 | 215
335 | 268
374 | | 161 201 245 262 293 137 346 175 218 266 319 151 377 | 194 | 242 | | 31 | 313
175 | 350
219 | | 32 242 271 299 290 327 233 356 264 295 326 357 259 387 132 165 201 215 241 112 285 144 179 219 262 124 309 | 294
159 | 328
199 | | 33 | 276
145 | 309
181 | | 34 214 239 265 257 290 315 233 261 288 315 343 | 260 | 290 | | 110 137 167 179 201 237 120 149 182 218 257 35 202 226 249 242 273 297 220 246 272 297 323 | 132
245 | 165
274 | | 101 126 153 164 184 217 110 137 167 200 236 36 191 213 236 229 258 280 208 232 257 281 305 | 121
232 | 151
259 | | 92 115 141 150 169 199 101 125 153 183 216 37 202 223 216 244 265 220 243 266 289 | 111 | 139
245 | | 106 130 138 155 183 115 141 169 199 | | 128 | | 98 119 128 143 169 106 130 156 184 | | 232
118 | | 39 | | 220
109 | | 40 | | 209
101 | | 41 181 176 198 215 197 216 235 95 101 114 134 103 124 146 | | | | 42 173 168 189 205 188 206 224 | | | | 88 94 106 125 96 115 136 43 165 160 180 196 179 196 213 | | | | 82 88 98 116 89 107 126 44 157 153 172 187 171 187 204 | | | | 76 82 92 108 83 100 118 45 146 164 179 179 194 | | | | 76 86 101 93 110 | | | | 46 139 157 171 171 186 71 80 95 87 103 | | | | 47 133 150 164 164 178 89 89 82 96 | | | | 48 128 144 157 157 171
63 70 83 77 90 | | | | 49 150 164 | | | | 50 78 85
144 157 | | | | 51 73 80
139 151 | | | | 52 69 75
52 133 145 | |
| | 65 71 | | | | ASD K-SERIES ECONOMY TABLE - STANDARD UNITS | 26K9
26
10.4 | |--|--------------------| | Designation 2000 22K7 24K7 26K7 24K6 30K7 26K6 26K6 26K6 30K6 16K9 30K6 16K9 20K9 22K9 24K Depth (In). 28 22 24 26 28 24 30 26 28 16 30 18 20 22 24 Approx. Wt (lbs./ft.) 8.9 9.0 9.0 9.2 9.4 9.6 9.7 9.8 10.0 10.0 10.1 10.1 10.2 10.2 | 26 | | Depth (In). 28 22 24 26 28 24 30 26 28 16 30 18 20 22 24 Approx. Wt (Ibs./ft.) 8.9 9.0 9.0 9.0 9.2 9.4 9.6 9.7 9.8 10.0 10.0 10.1 10.1 10.1 10.2 10.3 | 0. 20 999 | | (lbs./ft.) 8.9 9.0 9.0 9.0 9.2 9.4 9.6 9.7 9.6 10.0 10.0 10.1 10.1 10.2 10.0 | 10.4 | | | | | Span (ft.) | _ | | 16 550
550 | | | 17 550
526 | | | 18 550 550
490 550 | | | 19 550 550 550
455 523 550 | | | 20 550 550 550
426 490 550 | | | 21 550 550 550 550 550 550 550 550 550 55 | | | 22 550 550 550 550 550 550 550 548 | | | 23 550 550 550 550 550 550 550 550 | | | 518 550 550 363 418 468 518 550 24 550 | | | 495 544 544 346 396 448 495 544 25 550 | 550 | | 474 520 550 520 550 311 377 426 474 520 26 550 | 550
550 | | 454 499 541 499 541 276 354 405 454 498 27 550 512 550 550 550 550 550 439 498 550 550 550 | 541
550 | | 550 406 479 522 550 479 522 550 246 315 389 432 479 28 548 475 521 550 550 550 550 408 463 517 550 550 | 522
550 | | 541 364 436 501 543 456 501 543 220 282 353 413 456 29 511 443 485 527 550 536 550 550 550 380 550 431 482 532 550 | 501
550 | | 486 327 392 463 522 429 550 479 522 198 550 254 317 387 438
30 477 413 453 492 531 500 550 544 550 355 550 402 450 497 544 | 479
550 | | 439 295 353 417 486 387 543 457 500 178 543 229 286 349 418 31 446 387 424 460 497 468 534 509 550 332 550 376 421 465 510 | 459
550 | | 397 267 320 378 440 350 508 413 480 161 520 207 259 316 378 32 418 363 397 432 466 439 501 477 515 311 549 353 395 436 478 | 444
519 | | 361 242 290 343 400 318 461 375 438 147 500 188 235 287 344 | 407 | | 329 221 265 312 364 289 420 342 399 460 171 214 261 313 | 488
370 | | 34 370 321 351 382 412 388 443 422 456 490 312 349 386 423 300 202 242 285 333 264 384 312 364 420 156 195 239 286 | 459
338 | | 35 349 303 331 360 389 366 418 398 430 462 294 329 364 398
275 185 221 261 305 242 351 286 333 384 143 179 219 262 | 433
310 | | 36 330 286 313 340 367 346 395 376 406 436 278 311 344 377 252 169 203 240 280 222 323 263 306 353 132 164 201 241 | 409
284 | | 37 312 271 296 322 348 327 373 356 384 413 294 325 356 232 156 187 221 257 205 297 242 282 325 151 185 222 | 387
262 | | 38 | 367
241 | | 39 | 348
223 | | 40 266 231 253 275 297 280 319 304 328 353 251 278 304 183 123 148 174 203 161 234 191 222 256 119 146 175 | 331
207 | | 41 253 220 241 262 283 266 303 289 312 335 264 290
170 114 137 162 189 150 217 177 206 238 135 162 | 315
192 | | 42 241 209 229 249 269 253 289 275 297 320 252 276
158 106 127 150 175 139 202 164 192 221 126 156 | 300
178 | | 43 230 200 219 238 257 242 276 263 284 305 240 263 | 286 | | 44 220 191 209 227 245 231 263 251 271 291 229 251 | 166
273 | | 137 92 110 131 152 121 176 143 167 192 109 131 45 210 199 217 234 220 251 240 259 278 240 | 155
261 | | 128 103 122 142 113 164 133 156 179 122 46 201 191 207 224 211 241 229 248 266 230 | 145
250 | | 120 97 114 133 106 153 125 146 168 114 47 192 183 199 214 202 230 219 237 255 220 | 135
239 | | 112 90 107 125 99 144 117 136 157 107 48 184 175 190 206 194 221 210 227 244 211 | 127
229 | | 105 85 100 117 93 135 110 128 148 101 49 177 183 197 212 202 218 234 234 | 119
220 | | 99 94 110 127 103 120 139 50 170 175 189 203 194 209 225 | 112
211 | | 93 89 103 119 97 113 130 51 163 168 182 195 186 201 216 | 105
203 | | 88 83 97 112 91 106 123 52 157 162 175 188 179 193 208 | 99
195 | | 83 79 92 106 86 100 116
53 151 168 181 186 200 | 93 | | 78 87 100 95 109 54 145 162 174 179 192 | + | | 74 82 94 89 103
55 140 156 168 173 185 | | | 70 77 89 85 98 56 135 151 162 166 179 | | | 66 73 84 80 92 | \perp | | 80 88 | | | 58 151 167 83 164 164 164 164 164 164 164 164 164 164 | | | 59 146 161 72 79 CC | | | 60 141 156 75 TS | | | _ | | | | | | | 9 | 9 D-92 4/ 15 D-14 | | | - 200 | | | | | |-------------------------|------------|-----------------------|------------|------------|------------|------------|------------|-------------------|------------|-----------------------|------------|------------|------------|------------|-----------------------| | | | | | ASD K- | SERIES | ECON | AT YMC | BLE - S | TANDA | RD UNI | TS | | | | | | Joist | 28K9 | 30K9 | 18K10 | 20K10 | 22K10 | 24K10 | 26K10 | 28K10 | 22K11 | 30K10 | 30K11 | 24K12 | 26K12 | 28K12 | 30K12 | | Designation Depth (In.) | 28 | 30 | 18 | 20 | 22 | 24 | 26 | 28 | 22 | 30 | 30 | 24 | 26 | 28 | 30 | | Approx. Wt. | | | | | | | | | | | | | | | | | (lbs/ft) | 10.5 | 10.6 | 11.6 | 11.6 | 11.7 | 11.7 | 11.8 | 11.8 | 11.9 | 11.9 | 13.3 | 13.5 | 13.7 | 14.5 | 15.0 | | Span (ft.) | | | | | | | | | | | | | | | | | 18 | | | 550
550 | | | | | | | | | | | | | | 19 | | | 550 | 550 | | | | | | | | | | | | | 20 | | | 523
550 | 550
550 | | | | | | | | | | | | | 21 | | | 490
550 | 550
550 | 550 | | | | 550 | | | | | | | | 22 | | | 460
550 | 520
550 | 550
550 | | | | 550
550 | | | | | | | | | | | 438 | 490 | 548 | | | | 548 | | | | | | | | 23 | | | 550
418 | 550
468 | 550
518 | 550
550 | | | 550
518 | | | 550
550 | | | | | 24 | | | 550
396 | 550
448 | 550
495 | 550
544 | | | 550
495 | | | 550
544 | | | | | 25 | | | 550
377 | 550
426 | 550
474 | 550
520 | 550
550 | | 550
474 | | | 550
520 | 550
550 | | | | 26 | | | 550 | 550 | 550 | 550 | 550 | | 550 | | | 550 | 550 | | - | | 27 | 550 | | 361
550 | 405
550 | 454
550 | 499
550 | 541
550 | 550 | 454
550 | | | 499
550 | 541
550 | 550 | | | 28 | 550
550 | | 347
548 | 389
550 | 432
550 | 479
550 | 522
550 | 550
550 | 432
550 | | | 479
550 | 522
550 | 550
550 | | | 29 | 543
550 | 550 | 331
511 | 375
550 | 413
550 | 456
550 | 501
550 | 543
550 | 413
550 | 550 | 550 | 456
550 | 501
550 | 543
550 | 550 | | | 522 | 550 | 298 | 359 | 399 | 436 | 479 | 522 | 399 | 550 | 550 | 436 | 479 | 522 | 550 | | 30 | 550
500 | 550
543 | 477
269 | 533
336 | 550
385 | 550
422 | 550
459 | 550
500 | 550
385 | 550
543 | 550
543 | 550
422 | 550
459 | 550
500 | 550
543 | | 31 | 550
480 | 550
520 | 446
243 | 499
304 | 550
369 | 550
410 | 550
444 | 550
480 | 550
369 | 550
520 | 550
520 | 550
410 | 550
444 | 550
480 | 550
520 | | 32 | 549
463 | 549
500 | 418
221 | 468
276 | 517
337 | 549
393 | 549
431 | 549
463 | 549
355 | 549
500 | 549
500 | 549
393 | 549
431 | 549
463 | 549
500 | | 33 | 527 | 532 | 393 | 440
251 | 486
307 | 532 | 532
404 | 532 | 532 | 532
468 | 532 | 532 | 532
404 | 532
435 | 532
468 | | 34 | 432
496 | 468
516 | 201
370 | 414 | 458 | 368
502 | 516 | 435
516 | 334
516 | 516 | 468
516 | 368
516 | 516 | 516 | 516 | | 35 | 395
468 | 441
501 | 184
349 | 229
390 | 280
432 | 337
473 | 378
501 | 410
501 | 314
494 | 441
501 | 441
501 | 344
501 | 378
501 | 410
501 | 441
501 | | 36 | 361
442 | 415
475 | 168
330 | 210
369 | 257
408 | 308
447 | 356
486 | 389
487 | 292
467 | 415
487 | 415
487 | 324
487 | 356
487 | 389
487 | 415
487 | | 37 | 332
418 | 383
449 | 154 | 193
349 | 236
386 | 283
423 | 334
460 | 366
474 | 269
442 | 392
474 | 392
474 | 306
474 | 334
474 | 366
474 | 392
474 | | 38 | 305
396 | 352
426
| | 178
331 | 217
366 | 260
401 | 308
436 | 344
461 | 247
419 | 374
461 | 374
461 | 290
461 | 315
461 | 344
461 | 374
461 | | | 282 | 325 | | 164 | 200 | 240 | 284 | 325 | 228 | 353 | 353 | 275 | 299 | 325 | 353 | | 39 | 376
260 | 404
300 | | 314
151 | 347
185 | 380
222 | 413
262 | 447
306 | 397
211 | 449
333 | 449
333 | 449
261 | 449
283 | 449
308 | 449
333 | | 40 | 357
241 | 384
278 | | 298
140 | 330
171 | 361
206 | 393
243 | 424
284 | 377
195 | 438
315 | 438
315 | 438
247 | 438
269 | 438
291 | 438
315 | | 41 | 340
224 | 365
258 | | | 314
159 | 344
191 | 374
225 | 404
263 | 359
181 | 427
300 | 427
300 | 427
235 | 427
256 | 427
277 | 427
300 | | 42 | 324 | 348 | | | 299 | 327 | 356 | 384 | 342 | 413 | 417 | 417 | 417 | 417 | 417 | | 43 | 208
309 | 240
332 | | | 148
285 | 177
312 | 210
339 | 245
367 | 168
326 | 282
394 | 284
407 | 224
406 | 244
407 | 264
407 | 284
407 | | 44 | 194
295 | 223
317 | | | 138
272 | 165
298 | 195
324 | 228
350 | 157
311 | 263
376 | 270
398 | 213
387 | 232
398 | 252
398 | 270
398 | | 45 | 181
282 | 208
303 | | | 128 | 154
285 | 182
310 | 212
334 | 146 | 245
359 | 258
389 | 199
370 | 222
389 | 240
389 | 258
389 | | | 169 | 195 | | | | 144 | 170 | 198 | | 229 | 246 | 185 | 212 | 229
380 | 246 | | 46 | 270
158 | 290
182 | | | | 272
135 | 296
159 | 320
186 | | 344
214 | 380
236 | 354
174 | 380
203 | 219 | 380
236 | | 47 | 258
148 | 277
171 | | | | 261
126 | 284
149 | 306
174 | | 329
201 | 372
226 | 339
163 | 369
192 | 372
210 | 372
226 | | 48 | 247
139 | 266
160 | | | | 250
118 | 272
140 | 294
163 | | 315
188 | 362
215 | 325
153 | 353
180 | 365
201 | 365
216 | | 49 | 237
130 | 255
150 | | | | | 261
131 | 282
153 | | 303
177 | 347
202 | | 339
169 | 357
193 | 357
207 | | 50 | 228 | 245 | | | | | 250 | 270 | | 291 | 333 | | 325 | 350 | 350 | | 51 | 123
219 | 235 | | | | | 124
241 | 144
260 | | 166
279 | 190
320 | | 159
313 | 185
338 | 199
343 | | 52 | 115
210 | 133
226 | | | | | 116
231 | 136
250 | | 157
268 | 179
308 | | 150
301 | 175
325 | 192
336 | | 53 | 109
203 | 126
218 | | | | | 110 | 128
240 | | 148
258 | 169
296 | | 142 | 165
313 | 184
330 | | | 103 | 119 | | | | | | 121 | | 140 | 159 | | | 156 | 177 | | 54 | 195
97 | 209
112 | | | | | | 232
114 | | 249
132 | 285
150 | | | 301
147 | 324
170 | | 55 | 188
92 | 202
106 | | | | | | 223
108 | | 240
125 | 275
142 | | | 290
139 | 312
161 | | 56 | 181
87 | 195
100 | | | | | | 215
102 | | 231
118 | 265
135 | | | 280
132 | 301
153 | | 57 | UI . | 188 | | | | | | 102 | | 223 | 256 | | | 102 | 290 | | 58 | | 95
181 | | | | | | | | 112
215 | 128
247 | | | | 145
280 | | 59 | | 90
175 | | | | | | | | 106
208 | 121
239 | | | | 137
271 | | 60 | | 86
169 | | | | | | | | 101
201 | 115
231 | | | | 130
262 | | - 55 | | 81 | | | | | - | | | 96 | 109 | | | | 124 | # STANDARD ASD LOAD TABLE STANDARD LRFD LOAD TABLE FOR TOP CHORD EXTENSIONS (S TYPE) and (R TYPE) Based on a 50 ksi Maximum Yield Strength ASD Load Table adopted by the Steel Joist Institute November 15, 1989 LRFD Load Table adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 - Effective December 31, 2010 Joist extensions are commonly furnished to support a variety of overhang conditions. Two types are pictured below. The first is the TOP CHORD EXTENSION or "S" TYPE, which has only the top chord angles extended. The second is the EXTENDED END or "R" TYPE in which the standard 21/2, (64 mm) end bearing depth is maintained over the entire length of the extension. The "S" TYPE extension is so designated because of its Simple nature whereas the "R" TYPE involves Reinforcing the top chord angles. The specifying professional should be aware that an "S" TYPE is more economical and should be specified whenever possible. The following load tables are for K-Series TOP CHORD EXTENSIONS and EXTENDED ENDS for ASD and LRFD methods of design. The tabulated values are the maximum allowable uniform load in pounds per linear foot (kiloNewton/meter). The "S" and "I" numbers shown in the load tables are the Elastic Section Modulus and Moment of Inertia of the extension (Section) number with which they are associated. In cases where it is not possible to meet specific job requirements with a 2½" (64 mm) deep "R" type extension (refer to "S" and "I" values in the Extended End Load Table), the depth of the extension must be increased to provide greater load-carrying capacity. The "S" and "R" extension numbers are intended to be associated with Standard K-Series Joist Sizes of matching Section. Number. When possible, the extension number should be limited to no more than the Standard K-Series Joist Section Number, for optimum economy. When TOP CHORD EXTENSIONS or EXTENDED ENDS are specified the bracing requirements must be considered by the specifying professional. It should be noted that an "R" TYPE extension must be specified when building details dictate a 21/2, (64 mm) depth at the end of the extension. In the absence of specific instructions, the joist manufacturer may provide either type. #### TOP CHORD EXTENSION #### **EXTENDED END** W = Uniform Load L1= Length of Extension SPAN = See K-Series Standard Specification for Definition of Span | | | | | TOF | CHORE | | | | process interests and test | PE) | | | | | |------|---------------------|---------------------|-------|-------|-------|----------|----------|--------------------------|----------------------------|-------|---------|-------|-------|-------| | | | | | | Ва | sed on a | | _ | of 50 ksi | | | | | | | | "0" | nja | | | | Pounds | Per Line | d 100000 20 8320 VI 8350 | 11 (1 4) | | | | | | | | "S" | | | | | 27.20 | 22.22 | LENGT | ` ' | | 100 000 | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | R1 | 0.895 | 1.119 | 550 | 550 | 550 | 550 | 550 | 446 | 332 | 257 | 205 | 167 | 139 | 117 | | R2 | 0.923 | 1.157 | 550 | 466 | 228 | 550 | 550 | 460 | 343 | 265 | 211 | 172 | 143 | 121 | | R3 | 1.039 | 1.299 | 550 | 550 | 550 | 550 | 550 | 518 | 386 | 299 | 238 | 194 | 161 | 136 | | R4 | 1.147 | 1.433 | 550 | 550 | 550 | 550 | 550 | 550 | 426 | 330 | 263 | 214 | 178 | 150 | | R5 | 1.249 | 1.561 | 550 | 550 | 550 | 550 | 550 | 550 | 464 | 359 | 286 | 233 | 194 | 164 | | R6 | 1.352 | 1.690 | 550 | 550 | 550 | 550 | 550 | 550 | 502 | 389 | 310 | 253 | 210 | 177 | | R7 | 1.422 | 1.802 | 550 | 550 | 550 | 550 | 550 | 550 | 528 | 409 | 326 | 266 | 221 | 186 | | R8 | 1.558 | 1.948 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 448 | 357 | 291 | 242 | 204 | | R9 | 1.673 | 2.091 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 481 | 384 | 313 | 260 | 219 | | R10 | 1.931 | 2.414 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 443 | 361 | 300 | 253 | | R11 | 2.183 | 2.729 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 501 | 408 | 339 | 287 | | R12 | 2.413 | 3.016 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 451 | 375 | 317 | | | | | | d on a Ma | aximum ' | N LOAD 1
Yield Stro
Linear F | ength of | | | | | |-----------|---------------------|---------------------|-------|-----------|----------|------------------------------------|----------|-------|-------|-------|-------| | | "S" | l | | | | LE | NGTH (L | 1) | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | | S1 | 0.099 | 0.088 | 550 | 363 | 178 | 105 | | | | | | | S2 | 0.127 | 0.138 | 550 | 466 | 228 | 135 | | | | | | | S3 | 0.144 | 0.156 | 550 | 529 | 259 | 153 | | | | | | | S4 | 0.160 | 0.172 | 550 | 550 | 288 | 170 | 112 | | | | | | S5 | 0.176 | 0.188 | 550 | 550 | 316 | 187 | 123 | | | | | | S6 | 0.192 | 0.204 | 550 | 550 | 345 | 204 | 135 | | | | | | S7 | 0.241 | 0.306 | 550 | 550 | 433 | 256 | 169 | 120 | | | | | S8 | 0.266 | 0.332 | 550 | 550 | 478 | 283 | 187 | 132 | | | | | S9 | 0.288 | 0.358 | 550 | 550 | 518 | 306 | 202 | 143 | 107 | | | | S10 | 0.380 | 0.544 | 550 | 550 | 550 | 404 | 267 | 189 | 141 | 109 | | | S11 | 0.438 | 0.622 | 550 | 550 | 550 | 466 | 307 | 218 | 162 | 126 | 100 | | S12 | 0.494 | 0.696 | 550 | 550 | 550 | 526 | 347 | 246 | 183 | 142 | 113 | | | | | | TOF | | | | | E (R TY | | | | | | |------|---------------------|---------------------|-------|-------|-------|--------|-----------------------|-------|----------|-------|-------|-------|-------|-------| | | | | | | , | | n a Yield
Per Line | - | of 50 ks | ı | | | | | | | "S" | " " | | | | rounds | r Ci Line | LENGT | H (L1) | | | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | R1 | 0.895 | 1.119 | 825 | 544 | 825 | 157 | 825 | 669 | 498 | 385 | 307 | 250 | 208 | 175 | | R2 | 0.923 | 1.157 | 825 | 700 | 343 | 202 | 825 | 690 | 514 | 399 | 318 | 259 | 216 | 181 | | R3 | 1.039 | 1.299 | 825 | 793 | 388 | 229 | 825 | 777 | 579 | 448 | 358 | 292 | 243 | 205 | | R4 | 1.147 | 1.433 | 825 | 825 | 825 | 825 | 825 | 825 | 639 | 495 | 394 | 321 | 267 | 225 | | R5 | 1.249 | 1.561 | 825 | 825 | 825 | 280 | 184 | 825 | 696 | 538 | 429 | 349 | 291 | 246 | | R6 | 1.352 | 1.690 | 825 | 825 | 517 | 825 | 202 | 825 | 753 | 583 | 465 | 379 | 315 | 265 | | R7 | 1.422 | 1.802 | 825 | 825 | 649 | 825 | 253 | 825 | 792 | 613 | 489 | 399 | 331 | 279 | | R8 | 1.558 | 1.948 | 825 | 825 | 825 | 424 | 280 | 825 | 825 | 672 | 535 | 436 | 363 | 306 | | R9 | 1.673 | 2.091 | 825 | 825 | 825 | 825 | 825 | 214 | 160 | 721 | 576 | 469 | 390 |
328 | | R10 | 1.931 | 2.414 | 825 | 825 | 825 | 825 | 400 | 283 | 211 | 163 | 664 | 541 | 450 | 379 | | R11 | 2.183 | 2.729 | 825 | 825 | 825 | 825 | 460 | 825 | 825 | 825 | 751 | 612 | 508 | 430 | | R12 | 2.413 | 3.016 | 825 | 825 | 825 | 825 | 520 | 825 | 274 | 825 | 169 | 676 | 562 | 475 | | | | | | TOF | | EXTEN
Based or
Pounds | | Strength | | 20 | | |-----------|---------------------|---------------------|-------|-------|--------|-----------------------------|--------|----------|--------|--------|-------| | | "S" | "l" | | | | | | LENGT | H (L1) | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6'' | 2'-0'' | 2'-6'' | 3'-0'' | 3'-6" | 4'-0'' | 4'-6" | | S1 | 0.099 | 0.088 | 825 | 544 | 267 | 157 | | | | | | | S2 | 0.127 | 0.138 | 825 | 700 | 343 | 202 | | | | | | | S3 | 0.144 | 0.156 | 825 | 793 | 388 | 229 | | | | | | | S4 | 0.160 | 0.172 | 825 | 825 | 432 | 255 | 168 | | | | | | S5 | 0.176 | 0.188 | 825 | 825 | 474 | 280 | 184 | | | | | | S6 | 0.192 | 0.204 | 825 | 825 | 517 | 306 | 202 | | | | | | S7 | 0.241 | 0.306 | 825 | 825 | 649 | 384 | 253 | 180 | | | | | S8 | 0.266 | 0.332 | 825 | 825 | 717 | 424 | 280 | 198 | | | | | S9 | 0.288 | 0.358 | 825 | 825 | 777 | 459 | 303 | 214 | 160 | | | | S10 | 0.380 | 0.544 | 825 | 825 | 825 | 606 | 400 | 283 | 211 | 163 | | | S11 | 0.438 | 0.622 | 825 | 825 | 825 | 699 | 460 | 327 | 243 | 189 | 150 | | S12 | 0.494 | 0.696 | 825 | 825 | 825 | 789 | 520 | 369 | 274 | 213 | 169 | # STANDARD ASD LOAD TABLE STANDARD LRFD LOAD TABLE ## FOR JOIST SUBSTITUTES AND OUTRIGGERS Based on a 50 ksi Maximum Yield Strength LRFD Load Table adopted by the Steel Joist Institute May 1, 2001 Revised to May 18, 2010 – Effective December 31, 2010 ## JOIST SUBSTITUTES, SIMPLE SPAN LOAD TABLES Joist substitutes are 2.5 inch (64 mm) deep sections intended for use in very short spans (less than 10 feet (3.05 m)) where Open Web Steel Joists are impractical. They are commonly specified to span over hallways and short spans in skewed bays. Joist substitutes are solid members that can be manufactured from material conforming to the Steel Joist Institute Standard Specifications and can be made of hot rolled or cold-formed channels or HSS as shown below. Full lateral support to the compressive flange is provided by attachments to the deck. Caution must be exercised during erection since joist substitutes exhibit some degree of instability. After erection and before loads of any description are placed on the joist substitutes, the ends must be attached to the supports per the SJI Standard Specification for Open Web Steel Joists, K-Series and the deck installed and attached to the top flange. The Simple Span Joist Substitutes Load Tables list uniform loads based on **LRFD** and **ASD** methods of design and are shown in U.S. Customary Units. The **BLACK** figures in the **LRFD** Load Table gives the TOTAL safe factored uniformly distributed load-carrying capacity in pounds per linear foot, of 2.5 Inch Joist Substitutes. The **BLACK** figures in the **ASD** Load Table gives the TOTAL safe uniformly distributed load-carrying capacity in pounds per linear foot, of 2.5 Inch Joist Substitutes. The RED figures in the Load Table represent the unfactored, uniform load, in pounds per linear foot, which will produce an approximate joist substitute deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored, uniform load for supplementary deflection criteria (i.e. an unfactored uniform load which will produce a joist substitute deflection of 1/240 of the span may be obtained by multiplying the RED figure by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist substitute as given in the ASD Load Table for 2.5 Inch Simple Span Joist Substitutes, K-Series. Minimum section properties shall be provided for the particular 2.5K type specified even at shorter spans where the developed load capacity may exceed 550 plf (ASD) or 825 plf (LRFD). | 2.5K JOIST SUBSTITUTES PROPERTIES | | | | | | | | | | |-----------------------------------|------|------|------|--|--|--|--|--|--| | 2.5K TYPE 2.5K1 2.5K2 2.5K3 | | | | | | | | | | | S in ³ | 0.62 | 0.86 | 1.20 | | | | | | | | l in⁴ | 0.77 | 1.07 | 1.50 | | | | | | | | Approximate weight (lbs/ft) | 3.0 | 4.2 | 6.4 | | | | | | | # LRFD | | LOAD TABLES | FOR 2.5 IN | CH SIMPL | E SPAN | | | | | |--|---|-----------------------------|----------|--------|--|--|--|--| | | JOIST SU | JOIST SUBSTITUTES, K-SERIES | | | | | | | | | Based on a Maximum Yield Strength of 50 | | | | | | | | | | Designation 2.5K1 2.5K2 2.5K3 | | | | | | | | | | Span (ft-in) Pounds per Linear foot | | | | | | | | | | 4'-0'' | 825 | 825 | 825 | | | | | | | 4 -0 | 550 | 550 | 550 | | | | | | | 5'-0" | 825 | 825 | 825 | | | | | | | 5 -0 | 326 | 452 | 550 | | | | | | | 6'-0" | 579 | 804 | 825 | | | | | | | | 182 | 253 | 354 | | | | | | | 7'-0'' | 418 | 580 | 810 | | | | | | | 7 -0 | 112 | 155 | 218 | | | | | | | 8'-0" | 316 | 439 | 612 | | | | | | | 0 -0 | 73 | 102 | 143 | | | | | | | 9'-0" | 0 | 343 | 480 | | | | | | | | 0 | 71 | 99 | | | | | | | 10'-0'' | 0 | 0 | 385 | | | | | | | 10-0 | 0 | 0 | 71 | | | | | | LOAD TABLES FOR 2.5 INCH SIMPLE SPAN | | | | | | | | |--------------------------------------|---|-------|-------|--|--|--|--| | JOIST SUBSTITUTES, K-SERIES | | | | | | | | | Based on a Maxii | Based on a Maximum Yield Strength of 50 ksi | | | | | | | | Designation | 2.5K1 | 2.5K2 | 2.5K3 | | | | | | Span (ft-in) Pounds per Linear Foo | | | | | | | | | 4'-0'' | 550 | 550 | 550 | | | | | | 4 -0 | 550 | 550 | 550 | | | | | | 5'-0'' | 550 | 550 | 550 | | | | | | 5 -0 | 326 | 452 | 550 | | | | | | 6'-0'' | 386 | 536 | 550 | | | | | | 0 -U | 182 | 253 | 354 | | | | | | 7'-0" | 279 | 387 | 540 | | | | | | 7 -0 | 112 | 155 | 218 | | | | | | 8'-0" | 211 | 293 | 408 | | | | | | 0 -U | 73 | 102 | 143 | | | | | | 9'-0'' | 0 | 229 | 320 | | | | | | 3 -0 | 0 | 71 | 99 | | | | | | 10'-0" | 0 | 0 | 257 | | | | | | 10-0 | 0 | 0 | 71 | | | | | #### JOIST SUBSTITUTES, OUTRIGGERS LOAD TABLES Joist substitutes may be used in an outrigger condition where the member is overhanging one support as illustrated below where a portion is the back span and the remainder is the cantilever span or outrigger. Joist substitutes used in this configuration are 2.5 inch (64 mm) deep sections. The Joist Outriggers Load Tables list uniform loads based on LRFD and ASD methods of design and are shown in U.S. Customary The **BLACK** figures in the **LRFD** Load Table gives the TOTAL safe factored uniformly distributed load-carrying capacity in pounds per linear foot, of 2.5 Inch Joist Outriggers. The **BLACK** figures in the **ASD** Load Table gives the TOTAL safe uniformly distributed load-carrying capacity in pounds per linear foot, of 2.5 Inch Joist Outriggers. Serviceability requirements must be checked by the specifying professional. When calculating the actual live load deflection at the end of the cantilever it is necessary to consider the length of the back span. Minimum section properties shall be provided for the particular 2.5K type specified even at shorter spans where the developed load capacity may exceed 550 plf (ASD) or 825 plf (LRFD). | LOAD TABLES FOR 2.5 INCH JOIST OUTRIGGERS, K-SERIES | | | | | | | | | | | |---|-------|-------|----------|----------|----------|---------|-----------|-------|-------|----| | | | TOTA | L ALLOWA | ABLE LOA | D FOR UN | SUPPORT | ED CANTIL | .EVER | | ů. | | | | | | | PLF | | | | | | | OUTRIGGER | | | | 8 | PAN ft-i | n | | | | | | TYPE | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | | 0.51/4 | 005 | 744 | E40 | 270 | 004 | 000 | 400 | 450 | 400 | | | 2.5K1 | 825 | 744 | 516 | 379 | 291 | 229 | 186 | 153 | 129 | | | 0.51/0 | | | -4- | | 400 | 040 | 0.50 | 040 | 470 | | | 2.5K2 | 825 | 825 | 717 | 526 | 403 | 318 | 258 | 213 | 179 | | | | | | | | | 0.00 | 10.00 | | | | | 2.5K3 | 825 | 825 | 825 | 735 | 562 | 444 | 360 | 297 | 250 | | | | | 3.23 | | | | | | | | | | LOAD TABLES FOR 2.5 INCH JOIST OUTRIGGERS, K-SERIES | | | | | | | | | | |---|-------|---|-------|-------|----------|-------|-------|-------|-------| | | | TOTAL ALLOWABLE LOAD FOR UNSUPPORTED CANTILEVER | | | | | | | | | | | | | | PLF | | | | | | OUTRIGGER | | | | | PAN ft-i | n | | | | | TYPE | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | 2.5K1 | 550 | 496 | 344 | 253 | 194 | 153 | 124 | 102 | 86 | | 2.5K2 | 550 | 550 | 478 | 351 | 269 | 212 | 172 | 142 | 119 | | 2.5K3 | 550 | 550 | 550 | 490 | 375 | 296 | 240 | 198 | 167 | # Notes: ## STANDARD SPECIFICATION ## FOR LONGSPAN STEEL JOISTS, LH-SERIES AND DEEP LONGSPAN STEEL JOISTS, DLH-SERIES Adopted by the Steel Joist Institute May 10, 2006 Revised to May 18, 2010, Effective December 31, 2010 SECTION 100. #### **SCOPE AND DEFINITIONS** #### 100.1 SCOPE The Standard Specification for Longspan Steel Joists, LH-Series and Deep Longspan Steel Joists, DLH-Series, hereafter referred to as the Specification, covers the design, manufacture, application, and erection stability and handling of Longspan Steel Joists LH-Series, and Deep Longspan Steel Joists, DLH-Series in buildings or other structures, where other structures are defined as those structures designed, manufactured, and erected in a manner similar to buildings.. LH- and DLH-Series joists shall be designed using Allowable Stress Design (ASD) or Load and Resistance Factor Design (LRFD) in accordance with this Specification. Steel joists shall be erected in accordance with the Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Code of Federal Regulations 29CFR Part 1926 Safety Standards for Steel Erection. The
erection of LH- and DLH-Series joists 144 ft. (43.9 m) or less is governed by Section 1926.757 Open Web Steel Joists and joists over this length by Section 1926.756 Beams and Columns. This Specification includes Sections 100 through 105. #### 100.2 DEFINITION The term "Longspan Steel Joists **LH-**Series and Deep Longspan Steel Joists **DLH-**Series", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength has been attained by cold working, suitable for the direct support of floors and roof slabs or decks. The **LH-**Series joists have been standardized in depths from 18 inches (457 mm) through 48 inches (1219 mm), for spans up through 96 feet (29260 mm). The **DLH-**Series joists have been standardized in depths from 52 inches (1321 mm) through 120 inches (3048 mm), for spans up through 240 feet (73150 mm). The **LH**- and **DLH**-Series standard joist designations are determined by their nominal depth at the center of the span, followed by the letters **LH** or **DLH** as appropriate, and then by the chord size designation assigned. The chord size designations range from 02 to 25. Therefore, as a performance based specification, the **LH**- and **DLH**-Series standard joist designations listed in the following Standard Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: Standard LRFD Load Table Longspan Steel Joists, LH-Series – U.S. Customary Units Standard ASD Load Table Longspan Steel Joists, LH-Series – U.S. Customary Units Standard LRFD Load Table Deep Longspan Steel Joists, DLH-Series – U.S. Customary Units Standard ASD Load Table Deep Longspan Steel Joists, DLH-Series – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables Standard LRFD Load Table Longspan Steel Joists, LH-Series - S.I. Units Standard ASD Load Table Longspan Steel Joists, LH-Series - S.I. Units Standard LRFD Load Table Deep Longspan Steel Joists, DLH-Series - S.I. Units Standard ASD Load Table Deep Longspan Steel Joists, DLH-Series - S.I. Units An alternate method of specifying a standard **LH**-Series joist is to provide the designation in a "load/load" sequence. The format used is dd**LH**tl/ll where: dd is the nominal depth of the joist in inches (mm) tl is the total uniformly distributed load applied to the joist top chord, plf (kN/m) Il is the uniform live load for which the deflection shall be checked and limited as required by the Specification, plf (kN/m) The load/load LH-Series joists can be specified in depths from 14 inches (356 mm) through 120 inches (3048 mm) and spans from 14 feet (4267 mm) up through 240 feet (73152 mm). The maximum uniformly distributed load-carrying capacity of 2400 plf (35.03 kN/m) in ASD and 3600 plf (52.54 kN/m) in LRFD has been established for this alternate LH-Series format. The maximum capacity for any given load/load LH-Series joist is a function of span, depth and chord size. Six standard types of **LH-** and **DLH-**Series joists are designed and manufactured. These types are underslung (top chord bearing) or square-ended (bottom chord bearing), with parallel chords or with single or double pitched top chords. A pitch of the joist top chord up to 1/2 inch per foot (1:24) is allowed. The standard joist designation depth shall be the depth at mid-span. #### 100.3 STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS The design drawings and specifications shall meet the requirements in the Code of Standard Practice for Steel Joists and Joist Girders, except for deviations specifically identified in the design drawings and/or specifications. SECTION 101. # REFERENCED SPECIFICATIONS, CODES AND STANDARDS #### **101.1 REFERENCES** American Institute of Steel Construction, Inc. (AISC) ANSI/AISC 360-10 Specification for Structural Steel Buildings American Iron and Steel Institute (AISI) ANSI/AISI S100-2007 North American Specification for Design of Cold-Formed Steel Structural Members ANSI/AISI S100-07/S1-09, Supplement No. 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition ANSI/AISI S100-07/S2-10, Supplement No. 2 to the North American Specification for the Design of Cold-Formed Steel Structural Members. 2007 Edition American Society of Testing and Materials, ASTM International (ASTM) ASTM A6/A6M-09, Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling ASTM A36/A36M-08, Standard Specification for Carbon Structural Steel ASTM A242/242M-04 (2009), Standard Specification for High-Strength Low-Alloy Structural Steel ASTM A307-07b, Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength ASTM A325/325M-09, Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi [830 MPa] Minimum Tensile Strength ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products ASTM A500/A500M-07, Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes ASTM A529/A529M-05, Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality ASTM A572/A572M-07, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel ASTM A588/A588M-05, Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance ASTM A606/A606M-09, Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance ASTM A992/A992M-06a, Standard Specification for Structural Steel Shapes ASTM A1008/A1008M-09, Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable ASTM A1011/A1011M-09a, Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength #### American Welding Society (AWS) AWS A5.1/A5.1M-2004, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding AWS A5.5/A5.5M:2006, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.17/A5.17M-97:R2007, Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.18/A5.18M:2005, Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.20/A5.20M:2005, Specification for Carbon Steel Electrodes for Flux Cored Arc Welding AWS A5.23/A5.23M:2007, Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M:2005, Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M:2005, Specification for Low Alloy Steel Electrodes for Flux Cored Arc Welding #### **101.2 OTHER REFERENCES** The following references are non-ANSI Standard documents and as such, are provided solely as sources of commentary or additional information related to topics in this Specification: American Society of Civil Engineers (ASCE) SEI/ASCE 7-10 Minimum Design Loads for Buildings and Other Structures Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. Steel Joist Institute (SJI) SJI-COSP-2010, Code of Standard Practice for Steel Joists and Joist Girders Technical Digest No. 3 (2007), Structural Design of Steel Joist Roofs to Resist Ponding Loads Technical Digest No. 5 (1988), Vibration of Steel Joist-Concrete Slab Floors Technical Digest No. 6 (2011), Structural Design of Steel Joist Roofs to Resist Uplift Loads Technical Digest No. 8 (2008), Welding of Open Web Steel Joists and Joist Girders Technical Digest No. 9 (2008), Handling and Erection of Steel Joists and Joist Girders Technical Digest No. 10 (2003), Design of Fire Resistive Assemblies with Steel Joists Technical Digest No. 11 (2007), Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders Technical Digest No. 12 (2007), Evaluation and Modification of Open Web Steel Joists and Joist Girders Steel Structures Painting Council (SSPC) (2000), Steel Structures Painting Manual, Volume 2, Systems and Specifications, Paint Specification No. 15, Steel Joist Shop Primer, May 1, 1999, Pittsburgh, PA. SECTION 102. #### **MATERIALS** #### 102.1 STEEL The steel used in the manufacture of LH- and DLH-Series joists shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength Low-Alloy Structural Steel, ASTM A242/A242M. - Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M. - High-Strength Carbon-Manganese Steel of Structural Quality, ASTM A529/A529M. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M. - High-Strength Low-Alloy Structural Steel up to 50 ksi [345 MPa] Minimum Yield Point with Atmospheric Corrosion Resistance, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance, ASTM A606/A606M. - Structural Steel Shapes, ASTM A992/A992M. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra High Strength, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such
material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 102.2. #### **102.2 MECHANICAL PROPERTIES** Steel used for LH- and DLH-Series joists shall have a minimum yield strength determined in accordance with one of the procedures specified in this section, which is equal to the yield strength* assumed in the design. *The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1 "Yield Point", and in paragraph 13.2 "Yield Strength", of ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, or as specified in paragraph 102.2 of this specification. Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A500/A500M, A529/A529M, A572/A572M, A588/A588M, A992/A992M whichever specification is applicable, on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606/A606M, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specifications for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - a) The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 8 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times the least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. #### **102.3 WELDING ELECTRODES** The following electrodes shall be used for arc welding: a) For connected members both having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E70XX AWS A5.5: E70XX-X AWS A5.17: F7XX-EXXX, F7XX-ECXXX flux electrode combination AWS A5.18: ER70S-X, E70C-XC, E70C-XM AWS A5.20: E7XT-X, E7XT-XM AWS A5.23: F7XX-EXXX-XX, F7XX-ECXXX-XX AWS A5.28: ER70S-XXX, E70C-XXX AWS A5.29: E7XTX-X, E7XTX-XM b) For connected members both having a specified minimum yield strength of 36 ksi (250 MPa) or one having a specified minimum yield strength of 36 ksi (250 MPa), and the other having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E60XX AWS A5.17: F6XX-EXXX, F6XX-ECXXX flux electrode combination AWS A5.20: E6XT-X, E6XT-XM AWS A5.29: E6XTX-X, E6XTX-XM or any of those listed in Section 102.3(a). Other welding methods, providing equivalent strength as demonstrated by tests, shall be permitted to be used. #### **102.4 PAINT** The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15. - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. #### SECTION 103. #### DESIGN AND MANUFACTURE #### **103.1 METHOD** Joists shall be designed in accordance with this specification as simply-supported trusses supporting a floor or roof deck so constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates, use the American Institute of Steel Construction, Specification for Structural Steel Buildings. - b) For members which are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. #### **Design Basis:** Steel joist designs shall be in accordance with the provisions in this Standard Specification using Load and Resistance Factor Design (LRFD) or Allowable Strength Design (ASD) as specified by the **specifying professional** for the project. #### Loads, Forces and Load Combinations: The loads and forces used for the steel joist design shall be calculated by the **specifying professional** in accordance with the applicable building code and specified and provided on the contract drawings. The load combinations shall be specified by the **specifying professional** on the contract drawings in accordance with the applicable building code or, in the absence of a building code, the load combinations shall be those stipulated in SEI/ASCE 7. For LRFD designs, the load combinations in SEI/ASCE 7, Section 2.3 apply. For ASD designs, the load combinations in SEI/ASCE 7, Section 2.4 apply. #### 103.2 DESIGN AND ALLOWABLE STRESSES #### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, f_u , shall not exceed ϕF_n where: f_u = required stress ksi (MPa) F_n = nominal stress ksi (MPa) ϕ = resistance factor ϕF_n = design stress #### **Design Using Allowable Strength Design (ASD)** Joists shall have their components so proportioned that the required stresses, f, shall not exceed F_n/Ω where: f = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Ω = safety factor $F_n/Ω$ = allowable stress #### Stresses: For Chords: The calculation of design or allowable stress shall be based on a yield strength, F_y , of the material used in manufacturing equal to 50 ksi (345 MPa). For all other joist elements: The calculation of design or allowable stress shall be based on a yield strength, F_y , of the material used in manufacturing, but shall not be less than 36 ksi (250 MPa) or greater than 50 ksi (345 MPa). Note: Yield strengths greater than 50 ksi shall not be used for the design of any joist members. (a) Tension: $\phi_t = 0.90 \text{ (LRFD)}, \Omega_t = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_y$$ (LRFD) (103.2-1) Allowable Stress = $$0.6F_y$$ (ASD) (103.2-2) (b) Compression: $\phi_c = 0.90$ (LRFD), $\Omega_c = 1.67$ (ASD) Design Stress = $$0.9F_{cr}$$ (LRFD) (103.2-3) Allowable Stress = $$0.6F_{cr}$$ (ASD) (103.2-4) For members with $\frac{k\ell}{r} \le 4.71 \sqrt{\frac{E}{Q}F_y}$ $$F_{cr} = Q \left[0.658^{\left(QF_{y}/F_{e}\right)} \right] F_{y}$$ (103.2-5) For members with $$\frac{k\ell}{r} > 4.71 \sqrt{\frac{E}{Q}F_y}$$ $$F_{cr} = 0.877F_{e}$$ (103.2-6) Where F_e = Elastic buckling stress determined in accordance with Equation 103.2-7 $$F_{e} = \frac{\pi^{2} E}{\left(\frac{k \ell}{r}\right)^{2}}$$ (103.2-7) In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for a compression or tension web member, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). For hot-rolled sections and cold formed angles, Q is the full reduction factor for slender compression members as defined in the AISC *Specification for Structural Steel Buildings*.except that when the first primary compression web member is a crimped-end angle member, whether hot-rolled or cold formed:. $$Q = [5.25/(w/t)] + t \le 1.0$$ (103.2-8) Where: w = angle leg length, inches t = angle leg thickness, inches or, $$Q = [5.25/(w/t)] + (t/25.4) \le 1.0$$ (103.2-9) Where: w = angle leg length, millimeters t = angle leg thickness, millimeters For all other cold-formed sections the method of calculating the nominal compression strength is given in the AISI, North American Specification for the Design of Cold-Formed Steel Structural Members. (c) Bending: $\phi_b = 0.90 \text{ (LRFD)}, \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_n = F_v$ Design Stress = $$\phi_b F_n = 0.9 F_y$$ (LRFD) (103.2-10) Allowable Stress = $$F_n/\Omega_b$$ = 0.6 F_y (ASD) (103.2-11) For web members of solid round cross section: $F_n = 1.6 F_y$ Design Stress = $$\phi_b F_n = 1.45
F_y$$ (LRFD) (103.2-12) Allowable Stress = $$F_n/\Omega_b$$ = 0.95 F_y (ASD) (103.2-13) For bearing plates used in joist seats: $F_n = 1.5 F_y$ Design Stress = $$\phi_b F_n = 1.35 F_y$$ (LRFD) (103.2-14) Allowable Stress = $$F_n/\Omega_b$$ = 0.90 F_y (ASD) (103.2-15) #### (d) Weld Strength: Shear at throat of fillet welds, flare bevel groove welds, partial joint penetration groove welds, and plug/slot welds: Nominal Shear Stress = $$F_{nw}$$ = 0.6 F_{exx} (103.2-16) **LRFD**: $\phi_{w} = 0.75$ Design Shear Strength = $$\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A_w$$ (103.2-17) **ASD**: $\Omega_{\rm w} = 2.0$ Allowable Shear Strength = $$R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A_w$$ (103.2-18) Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations F_{exx} = 70 ksi (483 MPa) Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations F_{exx} = 60 ksi (414 MPa) A_w = effective throat area, where: For fillet welds, A_w = effective throat area, (other design methods demonstrated to provide sufficient strength by testing shall be permitted to be used); For flare bevel groove welds, the effective weld area is based on a weld throat width, T, where: $$T \text{ (inches)} = 0.12D + 0.11$$ (103.2-19) Where: D = web diameter, inches or, $$T (mm) = 0.12D + 2.8$$ (103.2-20) Where: D = web diameter, mm For plug/slot welds, A_w = cross-sectional area of the hole or slot in the plane of the faying surface provided that the hole or slot meets the requirements of the American Institute of Steel Construction Specification for Structural Steel Buildings (and as described in SJI Technical Digest No. 8, "Welding of Open-Web Steel Joists and Joist Girders"). Strength of resistance welds and complete-joint-penetration groove or butt welds in tension or compression (only when the stress is normal to the weld axis) is equal to the base metal strength: $$\phi_t = \phi_c = 0.90 \text{ (LRFD)}$$ $\Omega_t = \Omega_c = 1.67 \text{ (ASD)}$ Design Stress = $$0.9 F_v$$ (LRFD) (103.2-21) Allowable Stress = $$0.6 F_v$$ (ASD) (103.2-22) #### 103.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratios, 1.0ℓ /r and 1.0ℓ s /r of members as a whole or any component part shall not exceed the values given in Table 103.3-1, Parts A. The effective slenderness ratio, $k\ell/r$ to be used in calculating the nominal stresses, F_{cr} and F'_{e} , is the largest value as determined from Table 103.3-1, Parts B and C. In compression members when fillers or ties are used, they shall be spaced so that the ℓ_s/r_z ratio of each component does not exceed the governing ℓ/r ratio of the member as a whole. The terms used in Table 103.3-1 are defined as follows: - ℓ = length center-to-center of panel points, except ℓ = 36 inches (914 millimeters) for calculating ℓ/r_y of top chord member, in. (mm). - ℓ_s = maximum length center-to-center between panel point and filler (tie), or between adjacent fillers (ties), in. (mm). - r_x = member radius of gyration in the plane of the joist, in. (mm). - r_v = member radius of gyration out of the plane of the joist, in. (mm). - r_z = least radius of gyration of a member component, in. (mm). Compression web members are those web members subject to compressive axial loads under gravity loading. Tension web members are those web members subject to tension axial loads under gravity loading, and which may be subject to compressive axial loads under alternate loading conditions, such as net uplift. For top chords, the end panel(s) are the panels between the bearing seat and the first primary interior panel point comprised of at least two intersecting web members. ## TABLE 103.3-1 MAXIMUM AND EFFECTIVE SLENDERNESS RATIOS | | | MAXIMOM AND LITEOTIVE OF | LIADLINATOO | INATIOO | | | |---|-----|--|-------------------------------|------------------------|-------------------|---------------| | | | Description | kℓ/r _× | kℓ/r _y | kℓ/r _z | $k\ell_s/r_z$ | | | TOP | CHORD INTERIOR PANELS | | | - | | | | Α. | The slenderness ratios, $1.0\ell/r$ and $1.0\ell_s/r$ part shall not exceed 90. | of members as a | a whole o | any comp | onent | | | B. | The effective slenderness ratio, $k\ell/r$, to de | etermine F _{cr} wher | e k is: | | | | | | With fillers or ties | 0.75 | 0.94 | | 1.0 | | | | Without fillers or ties | | | 0.75 | | | | | Single component members | 0.75 | 0.94 | | | | | C. | For bending, the effective slenderness ra | tio, kℓ/r, to determ | nine F _e wl | nere k is: | | | | | | 0.75 | · | | | | | TOP | CHORD END PANELS, ALL BOTTOM | CHORD PANEI | LS | | | | | A. | The slenderness ratios, $1.0\ell/r$ and $1.0\ell/s/r$ part shall not exceed 120 for Top Chords | | | | onent | | | B. | The effective slenderness ratio, $k\ell/r$, to de | etermine F _{cr} wher | e k is: | | | | | | With fillers or ties | 1.0 | 0.94 | | 1.0 | | | | Without fillers or ties | | | 1.0 | | | | | Single component members | 1.0 | 0.94 | | | | | C. | For bending, the effective slenderness ra | tio, kℓ/r, to determ | nine F _e wi | nere k is: | | | | | | 1.0 | | | | | | TEN | SION WEB MEMBERS | | | | | | | Α. | The slenderness ratios, $1.0\ell/r$ and $1.0\ell_s/r$ part shall not exceed 240. | of members as a | a whole o | any comp | onent | | | B. | For end web members subject to compre determine F_{cr} where k is: | ssion, the effectiv | e slender | ness ratio, | kℓ/r, to | | | | With fillers or ties | 0.75 | 1.0 | | 1.0 | | | | Without fillers or ties | | | 1.0 | | | | | Single component members | 0.75 | 8.0 | | | | V | CON | IPRESSION WEB MEMBERS | | | | | | | A. | The slenderness ratios, 1.0 and $1.0\ell_s/r$, o shall not exceed 200. | f members as a v | vhole or a | ny compon | ent part | | | B. | The effective slenderness ratio, kℓ/r, to de | etermine F _{cr} wher | e k is: | | | | | | 1. With fillers or ties | 0.75 | 1.0 | | 1.0 | | | 1 | Without fillers or ties | | | 1.0 | | | | | 2. Without fillers of ties | | | | | #### **103.4 MEMBERS** #### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than: $$r_{y} \ge \ell_{br} / \left(124 + 0.67 \, d_{j} + 28 \, \frac{d_{j}}{L} \right)$$, in. (103.4-1a) $$r_y \ge \ell_{br} / \left(124 + 0.026 d_j + 0.34 \frac{d_j}{L}\right)$$, mm (103.4-1b) or, $$r_{v} \ge \ell_{br}/170$$ (103.4-2) Where: d_i is the steel joist depth, in. (mm) L is the joist span length, ft. (m) r_y is the out-of-plane radius of gyration of the top chord, in. (mm) ℓ_{br} is the spacing in inches (millimeters) between lines of bridging as specified in Section 104.5(d). The top chord shall be considered as stayed laterally by the floor slab or roof deck provided the requirements of Section 104.9(e) of this specification are met. The top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that: #### For LRFD: at the panel point: $$f_{au} + f_{bu} \le 0.9 F_{v}$$ (103.4-3) at the mid panel: for, $$\frac{f_{au}}{\phi_c F_{cr}} \ge 0.2$$, $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9} \left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F'_e}\right)} \right] Q \phi_b F_y$$ \(\left(103.4-4) $$\text{for, } \frac{f_{au}}{\phi_c F_{cr}} < 0.2 \,,$$ $$\left(\frac{f_{au}}{2\phi_c F_{cr}}\right) + \left\lceil \frac{C_m f_{bu}}{\left\lceil 1 - \left(\frac{f_{au}}{\phi_c F'_e}\right) \right\rceil Q \phi_b F_y} \right\rceil \le 1.0$$ (103.4-5) $f_{au} = P_u/A = Required compressive stress, ksi (MPa)$ P_u = Required axial strength using LRFD load combinations, kips (N) $f_{bu} = M_u/S = Required bending stress at the location under consideration, ksi (MPa)$ M_{II} = Required flexural strength using LRFD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm3) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ℓ/r as defined in Section 103.2(b), $C_m = 1 - 0.3 f_{au}/\phi F'_e$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F'_e$ for interior panels F_v = Specified minimum yield strength, ksi (MPa) $$F'_e = \frac{\pi^2 E}{(K \ell / r_x)^2}$$, ksi (MPa) Where ℓ is the panel length, in inches (millimeters), as defined in Section 103.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 103.2(b) A = Area of the top chord, in.² (mm²) #### For ASD: at the panel point: $$f_a + f_b \le 0.6F_v$$ (103.4-6) at the mid panel: for, $$\frac{f_a}{F_a} \ge 0.2$$, $$\frac{f_{a}}{F_{a}} + \frac{8}{9} \left[\frac{C_{m} f_{b}}{1 - \left(\frac{1.67 f_{a}}{F'_{e}}\right) Q F_{b}} \right] \le 1.0$$ (103.4-7) for $$\frac{f_a}{F_a} < 0.2$$, $$\left(\frac{f_a}{2F_a}\right) + \left\lceil \frac{C_m f_b}{1 - \left(\frac{1.67 f_a}{F'_e}\right) \right\rceil Q F_b} \right\rceil \le 1.0$$ (103.4-8) f_a = P/A required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, k-in. (N-mm) F_a = Allowable axial compressive stress based on ℓ/r as defined in Section 103.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6 F_y , ksi (MPa) C_m = 1 - 0.50 f_a/F'_e for end panels C_m = 1 - 0.67 f_a/F'_e for interior panels The top chord and bottom chord shall be designed such that at each joint: $$f_{vmod} \le \phi_v f_n$$ (LRFD, $\phi = 1.00$) (103.4-9) $$f_{vmod} \le f_n/\Omega_v$$ (ASD, $\Omega = 1.50$) (103.4-10) f_n = nominal shear stress = 0.6F_v, ksi (MPa) f_t = axial stress = P/A, ksi (MPa) f_v = shear stress = V/bt, ksi (MPa) f_{vmod} = modified shear stress =
$(\frac{1}{2})(f_t^2 + 4f_v^2)^{1/2}$ b = length of vertical part(s) of cross section, in. (mm) t = thickness of vertical part(s) of cross section, in. (mm) It shall not be necessary to design the top chord and bottom chord for the modified shear stress when a round bar web member is continuous through a joint. The minimum required shear of Section 103.4(b) 25 percent of the end reaction) shall not be required when evaluating Equation 103.4-9 or 103.4-10. #### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of ½ of 1.0 percent of the top chord axial force. #### (c) Joist Extensions Joist extensions are defined as one of three types, top chord extensions (TCX), extended ends, or full depth cantilevers. Design criteria for joist extensions shall be specified using one of the following methods: - (1) A joist extension shall be designed for the load from the Standard Load Tables based on the design length and designation of the specified joist. In the absence of other design information, the joist manufacturer shall design the joist extension for this loading as a default. - (2) A loading diagram shall be provided for the joist extension. The diagram shall include the magnitude and location of the loads to be supported, as well as the appropriate load combinations. Any deflection requirements or limits due to the accompanying loads and load combinations on the joist extension shall be provided by the **specifying professional**, regardless of the method used to specify the extension. Unless otherwise specified, the joist manufacturer shall check the extension for the specified deflection limit under uniform live load acting simultaneously on both the joist base span and the extension. The joist manufacturer shall consider the effects of joist extension loading on the base span of the joist. This includes carrying the design bending moment due to the loading on the extension into the top chord end panel(s), and the effect on the overall joist chord and web axial forces. Bracing of joist extensions shall be clearly indicated on the structural drawings. #### 103.5 CONNECTIONS #### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. #### (1) Welded Connections - Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between weld and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 mm) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 mm) in any 1 inch (25 mm) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. #### (2) Welded Connections for Crimped-End Angle Web Members The connection of each end of a crimped angle web member to each side of the chord shall consist of a weld group made of more than a single line of weld. The design weld length shall include, at minimum, an end return of two times the nominal weld size. #### (3) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (See Technical Digest 8 - Welding of Open Web Steel Joists and Joist Girders.) (4) Weld Inspection by Outside Agencies (See Section 104.13 of this specification) The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 103.5(a)(1) above. Ultrasonic, X-ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. #### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices shall be permitted to occur at any point in chord or web members. Splices shall be designed for the member force, but not less than 50 percent of the member strength. All component parts comprising the cross section of the chord or web member (including reinforcing plates, rods, etc.) at the point of the splice, shall develop an ultimate tensile force of at least 1.2 times the product of the yield strength and the full design area of the chord or web. The "full design area" is the minimum required area such that the required stress will be less than the design (LRFD) or allowable (ASD) stress. #### (c) Field Splices Field Splices shall be designed by the manufacturer and shall be either bolted or welded. Splices shall be designed for the member force, but not less than 50 percent of the member strength. #### (d) Eccentricity Members connected at a joint shall have their center of gravity lines meet at a point, if practical. Eccentricity on either side of the neutral axis of chord members shall be permitted to be neglected when it does not exceed the distance between the neutral axis and the back of the chord. Otherwise, provision shall be made for the stresses due to eccentricity. Ends of joists shall be proportioned to resist bending produced by eccentricity at the support. In those cases where a single angle compression member is attached to the outside of the stem of a tee or double angle chord, due consideration shall be given to eccentricity. #### **103.6 CAMBER** Joists shall have approximate camber in accordance with the following: **TABLE 103.6-1** | Top Cho | ord Length | <u>Approxim</u> | ate Camber | |---------|------------|-----------------|------------| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | 50'-0" | (15240 mm) | 1" | (25 mm) | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | 70'-0" | (21336 mm) | 2" | (51 mm) | | 80'-0" | (24384 mm) | 2 3/4" | (70 mm) | | 90'-0" | (27432 mm) | 3 1/2" | (89 mm) | | 100'-0" | (30480 mm) | 4 1/4" | (108 mm) | For joist lengths exceeding 100'-0" a camber equal to Span/300 shall be used. The **specifying professional** shall give consideration to coordinating joist camber with adjacent framing. #### 103.7 VERIFICATION OF DESIGN AND MANUFACTURE #### (a) Design Calculations Companies manufacturing any LH- or DLH-Series Joists shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. Design data shall be submitted in detail and in the format specified by the Institute. #### (b) In-Plant Inspections Each manufacturer shall verify his ability to manufacture **LH**- and **DLH**-Series Joists through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. SECTION 104. #### **APPLICATION** #### **104.1 USAGE** This specification shall apply to any type of structure where floors and roofs are to be supported directly by steel joists installed as hereinafter specified. Where joists are used other than on simple spans under uniformly distributed loading as prescribed in Section 103.1, they shall be investigated and modified when necessary to limit the required stresses to those listed in Section 103.2. When a rigid connection of the bottom chord is to be made to a column or other structural support, the joist is then no longer simply supported, and the system shall be investigated for continuous frame action by the **specifying professional**. The magnitude and location of all loads and forces shall be provided on the structural drawings. The **specifying professional** shall design the supporting structure, including the design of columns, connections, and moment plates*. This design shall account for the stresses caused by lateral forces and the stresses due to connecting the bottom chord to the column or other structural support. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the **specifying professional**. The moment plates shall be furnished by other than the joist manufacturer. *For further reference, refer to Steel Joist Institute Technical Digest No. 11, "Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders" #### 104.2 SPAN The span of a longspan or deep longspan joist shall not exceed 24 times its depth. #### **104.3 DEPTH** Joists shall have either parallel chords or a top chord pitch of up to 1/2 inch per foot (1:24). The joist designation depth shall be the depth at mid-span. #### **104.4 END SUPPORTS** #### (a) Masonry and Concrete A LH- or DLH-Series Joist end supported by masonry or concrete shall bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical or lateral forces shall be taken by the **specifying professional** in the design of the steel bearing plate and the masonry or concrete. The ends of LH- and DLH-Series Joists shall extend a distance of not less than 6 inches (152 mm) over the masonry or
concrete support unless it is deemed necessary to bear less than 6 inches (152 mm) over the support. Special consideration shall then be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. LH- and DLH-Series Joists shall be anchored to the steel bearing plate and shall bear a minimum of 4 inches (102 mm) on the plate. The steel bearing plate shall be located not more than 1/2 inch (13 mm) from the face of the wall, otherwise special consideration shall be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. When the **specifying professional** requires the joist reaction to occur at or near the centerline of the wall or other support, then a note shall be placed on the contract drawings specifying this requirement and the specified bearing seat depth shall be increased accordingly. If the joist reaction is to occur more than 4 inches (102 mm) from the face of the wall or other support, the required bearing seat depth shall be the minimum seat depth plus a dimension at least equal to the distance the joist reaction is to occur beyond 4 inches (102 mm). The steel bearing plate shall not be less than 9 inches (229 mm) wide perpendicular to the length of the joist. The plate is to be designed by the **specifying professional** and shall be furnished by other than the joist manufacturer. #### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the **specifying professional** in the design of the steel support. The ends of **LH**- and **DLH**-Series Joists shall extend a distance over the steel supports not less than that shown in Table 104.4-1. JOIST SECTION NUMBER* 02 to 06 incl 07 to 17 incl 18 to 25 incl *Last two digits of joist designation shown in Load Table. **TABLE 104.4-1** Where deemed necessary to butt opposite joists over a narrow steel support with bearing less than that noted above, special ends shall be specified, and such ends shall have positive attachment to the support, either by bolting or welding. #### 104.5 BRIDGING Top and bottom chord bridging is required and shall consist of one or both of the following types: #### (a) Horizontal Horizontal bridging lines shall consist of continuous horizontal steel members. The ℓ/r ratio of the bridging member shall not exceed 300, where ℓ is the distance in inches (millimeters) between attachments and r is the least radius of gyration of the bridging member. #### (b) Diagonal Diagonal bridging lines shall consist of cross-bracing with a ℓ/r ratio of not more than 200, where ℓ is the distance in inches (millimeters) between connections and r is the least radius of gyration of the bracing member. Where cross-bracing members are connected at their point of intersection, the ℓ distance shall be taken as the distance in inches (millimeters) between connections at the point of intersection of the bridging members and the connections to the chords of the joists. #### (c) Bridging Lines For spans up through 60 feet (18288 mm), welded horizontal bridging shall be permitted except where the row of bridging nearest the center is required to be bolted diagonal bridging as indicated by the **Red** shaded area in the Load Table. For spans over 60 feet (18288 mm) bolted diagonal bridging shall be used as indicated by the <u>Blue and Gray shaded areas</u> of the Load Table. When the joist spacing is less than 0.70 x joist depth, bolted horizontal bridging shall be used <u>in addition</u> to bolted diagonal bridging. #### (d) Quantity and Spacing Bridging shall be properly spaced and anchored to support the decking and the employees prior to the attachment of the deck to the top chord. The maximum spacing of lines of bridging, ℓ_{bmax} shall be the lesser of, $$\ell_{bmax} = \left(124 + 0.67 d_j + 28 \frac{d_j}{L}\right) r_y$$, in. (104.5-1a) $$\ell_{brmax} = \left(124 + 0.026 \,d_j + 0.34 \frac{d_j}{L}\right) r_y, \, mm$$ (104.5-1b) or, $$\ell_{\text{bmax}} = 170 \, \text{r}_{\text{v}}$$ (104.5-2) Where: d_i is the steel joist depth, in. (mm) L is the joist span length, ft. (m) r_v is the out-of-plane radius of gyration of the top chord, in. (mm) The number of rows of top chord bridging shall not be less than as shown in Bridging Table 104.5-1 and the spacing shall meet the requirements of Equations 104.5-1 and 104.5-2. The number of rows of bottom chord bridging, including bridging required per Section 104.12, shall not be less than the number of top chord rows. Rows of bottom chord bridging are permitted to be spaced independently of rows of top chord bridging. The spacing of rows of bottom chord bridging shall meet the slenderness requirement of Section 103.4(a) and any specified strength requirements. For joist Section Number 21 and greater, bridging shall be installed near a bottom chord panel point or an extra web member shall be furnished to brace the bottom chord for the vertical component of the bridging force equal to the horizontal bracing force. #### (e) Sizing of Bridging Horizontal and diagonal bridging shall be capable of resisting the nominal unfactored horizontal compressive force, P_{br} given in Equation 104.5-3. $$P_{br} = 0.0025 \text{ n A}_t F_{construction}, \text{ lbs (N)}$$ (104.5-3) Where: n = 8 for horizontal bridging n = 2 for diagonal bridging A_t = cross sectional area of joist top chord, in.² (mm²) F_{construction} = assumed ultimate stress in top chord to resist construction loads $$F_{\text{construction}} = \left(\frac{\pi^2 E}{\left(\frac{0.9 \ell_{\text{bmax}}}{r_{\text{y}}}\right)^2}\right) \ge 12.2 \text{ksi}$$ (104.5-4a) $$\mathsf{F}_{\mathsf{construction}} = \left(\frac{\pi^2 \mathsf{E}}{\left(\frac{0.9 \,\ell_{\mathsf{brmax}}}{\mathsf{r_v}}\right)^2}\right) \ge 84.1 \mathsf{MPa} \tag{104.5-4b}$$ Where: E = Modulus of Elasticity of steel = 29,000 ksi (200,000 MPa) and $\frac{\ell_{\text{brmax}}}{r_{\text{y}}}$ is determined from Equations 104.5-1a, 104.5-1b or 104.5-2 The bridging nominal horizontal unfactored compressive forces, P_{br}, are summarized in Table 104.5-1. **TABLE 104.5-1** | JOIST SECTION
NUMBER* | MAXIMUM SPACING OF LINES OF TOP CHORD BRIDGING | NOMINAL HO
BRACING I | | |--------------------------|--|-------------------------|---------| | | | lbs | (N) | | 02 to 03 incl | 10'-0" (3048 mm) | 400 | (1779) | | 04 to 05 incl | 11'-0" (3353 mm) | 550 | (2447) | | 06 to 08 incl | 13'-0" (3962 mm) up to 39'-0" (11.89 m), then 15'-0" (4572 mm) | 750 | (3336) | | 09 | 13'-0" (3962 mm) up to 39'-0" (11.89 m), then 16'-0" (4877 mm) | 850 | (3781) | | 10 | 14'-0" (4267 mm) up to 42'-0" (12.80 m), then 18'-0" (5486 mm) | 900 | (4003) | | 11 | 15'-0" (4572 mm) up to 45'-0" (13.72 m), then 18'-0" (5486 mm) | 950 | (4226) | | 12 | 17'-0" (5182 mm) up to 51'-0" (15.54 m), then 18'-6" (5639 mm) | 1100 | (4893) | | 13 | 18'-0" (5486 mm) up to 54'-0" (16.46 m), then 21'-0" (6400 mm) | 1200 | (5338) | | 14 | 19'-0" (5791 mm) up to 57'-0" (17.37 m), then 21'-6" (6553 mm) | 1300 | (5783) | | 15 | 21'-0" (6400 mm) up to 63'-0" (19.20 m), then 24'-6" (7468 mm) | 1450 | (6450) | | 16 to 17 incl | 22'-0" (6706 mm) up to 66'-0" (20.12 m), then 25'-0" (7620 mm) | 1850 | (8229) | | 18 to 20 incl | 26'-0" (7924 mm) | 2000 | (8896) | | 21 to 22 incl | 30'-0" (9144 mm) | 2500 | (11120) | | 23 to 24 incl | 30'-0" (9144 mm) | 3100 | (13789) | | 25 | 30'-0" (9144 mm) | 3500 | (15569) | Number of lines of bridging is based on joist span dimensions. #### (f) Connections Connections to the joist chords shall be made by welding or mechanical means and shall be capable of resisting the nominal (unfactored) horizontal force, P_{br}, of Equation 104.5-3. #### (g) Bottom Chord Bearing Joists Where bottom chord bearing joists are utilized, a row of diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. #### 104.6 INSTALLATION OF BRIDGING Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the joist placement plans. The ends of all bridging lines terminating at walls or beams shall be anchored thereto. #### **104.7 BEARING SEAT ATTACHMENTS** #### (a) Masonry and Concrete Ends of **LH-** and **DLH-**Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto, as shown in Table 104.7-1, with a minimum of two fillet welds, or with two bolts, or the equivalent. ^{*}Last two digits of joist designation shown in load table. ^{**}Nominal bracing force is unfactored and shown value is for horizontal bridging only. For horizontal bracing force for X bridging divide value shown by 4. #### (b) Steel Ends of **LH**- and **DLH**-Series Joists resting on steel supports shall be attached thereto, as shown in Table 104.7-1, with two fillet welds, or with two 3/4 inch (19 mm) bolts, or the equivalent. When **LH**- and **DLH**-Series Joists are used to provide lateral stability to the supporting member, the final connection shall be made by welding or as designated by the **specifying professional**. **TABLE 104.7-1** | JOIST SECTION
NUMBER* | FILLET WELD | BEARING SEAT BOLTS FOR
ERECTION | |--------------------------|-----------------------|------------------------------------| | 02 to 06 incl. | 2- 3/16" x 2" | 2 2/4" (40 mm) A207 | | 02 to 00 mci. | (5 x 51 mm) | 2– 3/4" (19 mm) A307 | | 07 to 17 incl | 2- 1/4" x 2" | 2– 3/4" (19 mm) A307 | | 07 to 17 ilici | (6 x 51 mm) | 2- 3/4 (19 IIIII) A307 | | 18 to 25 incl | 2- 1/4" x 4" | 2– 3/4" (19 mm) A325 | | 16 to 25 ilici | (6 x 102 mm) | 2- 3/4 (19 IIIII) A323 | | *Last two digits of j | oist designation show | n in load table. | #### (c) Uplift Where uplift forces are a design consideration,
roof joists shall be anchored to resist such forces (Refer to Section 104.12 Uplift). #### **104.8 JOIST SPACING** Joists shall be spaced so that the loading on each joist does not exceed the design load (LRFD or ASD) for the particular joist designation and span as shown in the applicable load tables. #### 104.9 FLOOR AND ROOF DECKS #### (a) Material Floor and roof decks shall be permitted to consist of cast-in-place or pre-cast concrete or gypsum, formed steel, wood, or other suitable material capable of supporting the required load at the specified joist spacing. #### (b) Thickness Cast-in-place slabs shall be not less than 2 inches (51 millimeters) thick. #### (c) Centering Centering for cast-in-place slabs shall be permitted to be ribbed metal lath, corrugated steel sheets, paper-backed welded wire fabric, removable centering or any other suitable material capable of supporting the slab at the designated joist spacing. Centering shall not cause lateral displacement or damage to the top chord of joists during installation or removal of the centering or placing of the concrete. #### (d) Bearing Slabs or decks shall bear uniformly along the top chords of the joists. #### (e) Attachments The spacing of attachments along the joist top chord shall not exceed 36 inches (914 millimeters). Such attachments of the slab or deck to the top chords of joists shall be capable of resisting the forces given in Table 104.9-1. **TABLE 104.9-1** | JOIST SECTION NUMBER* | NOMINAL FORCE REQUIRED** | |--|---| | 02 to 04 incl. | 120 lbs/ft. (1.75 kN/m) | | 05 to 09 incl. | 150 lbs/ft. (2.19 kN/m) | | 10 to 17 incl. | 200 lbs/ft. (2.92 kN/m) | | 18 and 19 | 250 lbs/ft. (3.65 kN/m) | | 20 and 21 | 300 lbs/ft. (4.38 kN/m) | | 22 to 24 incl. | 420 lbs/ft. (6.13 kN/m) | | 25 | 520 lbs/ft. (7.59 kN/m) | | *Last two digits of jois **Nominal bracing for | t designation shown in Load Table.
ce is unfactored. | Where wood nailers are used, such nailers in conjunction with deck or slab shall be firmly attached to the top chords of the joists in conformance with Section 104.9(e). #### (g) Joist With Standing Seam Roofing or Laterally Unbraced Top Chords When the roof systems do not provide lateral stability for the joists in accordance with Section 104.9(e), i.e. as may be the case with standing seam roofs or skylights and openings, sufficient stability shall be provided to brace the joists laterally under the full design load. The compression chord shall resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). In any case where the attachment requirement of Section 104.9(e) is not achieved, out-of-plane strength shall be achieved by adjusting the bridging spacing and/or increasing the compression chord area and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/r_y; where L is the bridging spacing in inches (millimeters). The maximum bridging spacing shall not exceed that specified in Section 104.5(d). Horizontal bridging members attached to the compression chords and their anchorages shall be designed for a compressive axial force of $0.001nP + 0.004P \sqrt{n} \ge 0.0025nP$, where n is the number of joists between end anchors and P is the chord design force in kips (Newtons). The attachment force between the horizontal bridging member and the compression chord shall be 0.01P. Horizontal bridging attached to the tension chords shall be proportioned so that the slenderness ratio between attachments does not exceed 300. Diagonal bridging shall be proportioned so that the slenderness ratio between attachments does not exceed 200. ⁽f) Wood Nailers #### 104.10 DEFLECTION The deflection due to the design live load shall not exceed the following: Floors: 1/360 of span. Roofs: 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of joists. *For further reference, refer to Steel Joist Institute Technical Digest 5, Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. #### **104.11 PONDING** The ponding investigation shall be performed by the **specifying professional**. *For further reference, refer to Steel Joist Institute Technical Digest 3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and the AISC Specification for Structural Steel Buildings. #### 104.12 UPLIFT Where uplift forces due to wind are a design requirement, these forces shall be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract documents shall indicate if the net uplift is based upon LRFD or ASD. When these forces are specified, they shall be considered in the design of joists and/or bridging. A single line of **bottom chord** bridging shall be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration. *For further reference, refer to Steel Joist Institute Technical Digest 6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads." #### 104.13 INSPECTION Joists shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of these specifications. If the purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, they shall be permitted to reserve the right to do so in their "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the joists at the manufacturing shop by the purchaser's inspectors at purchaser's expense. #### 104.14 PARALLEL CHORD SLOPED JOISTS The span of a parallel chord sloped joist shall be defined by the length along the slope. Minimum depth, load-carrying capacity, and bridging requirements shall be determined by the sloped definition of span. The Load Table capacity shall be the component normal to the joist. SECTION 105. ## ERECTION STABILITY AND HANDLING* When it is necessary for the erector to climb on the joists, extreme caution shall be exercised since unbridged joists exhibit some degree of instability under the erector's weight. #### (a) Stability Requirements 1) <u>Before an employee is allowed on the steel joist</u>: BOTH ends of joists at columns (or joists designated as column joists) shall be attached to its supports. For all other joists a minimum of one end shall be attached before the employee is allowed on the joist. The attachment shall be in accordance with Section 104.7 – End Anchorage. When a bolted seat connection is used for erection purposes, as a minimum, the bolts shall be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This shall be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. - 2) On steel joists that do not require erection bridging as shown by the unshaded area of the Load Tables, only one employee shall be allowed on the steel joist unless all bridging is installed and anchored. - 3) Where the span of the steel joist is within the Red shaded area of the Load Table, the following shall apply: - a) The row of bridging nearest the mid span of the steel joist shall be bolted diagonal erection bridging; and - b) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored, unless an alternate method of stabilizing the joist has been provided; and - c) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - 4) Where the span of the steel joist is within the <u>Blue shaded area</u> of the Load Table, the following shall apply: - a) All rows of bridging shall be bolted diagonal bridging; and - b) Hoisting cables shall not be released until the two rows of bolted diagonal erection bridging nearest the third points of the steel joist are installed and anchored; and - c) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - 5) Where the span of the steel joist is in the Gray shaded area of the Load Table, the following shall apply: - a) All rows of bridging shall be bolted diagonal bridging; and - b) Hoisting cables shall not be released until all bridging is installed and anchored; and - c) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - 6) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide lateral stability. - 7) In the case of bottom chord bearing joists, the ends of the joist shall be restrained laterally per Section 104.5(g) before releasing the hoisting cables. - 8) After the joist is straightened and plumbed, and all bridging is completely installed and anchored, the ends of the joists shall be fully connected to the supports in accordance with Section 104.7 End Anchorage. #### (b) Landing and Placing Loads - 1) Except as stated in paragraph 105(b)(3) of this section, no "construction loads"⁽¹⁾ shall be allowed on the steel joists until all bridging is installed and anchored, and all joist bearing ends are attached. - 2) During the construction period, loads placed on the steel joists shall be distributed so as not to exceed the capacity of the steel joists. - 3) The weight of a bundle of joist bridging shall not exceed a total of 1000 pounds (454 kilograms). The bundle of joist bridging shall be placed on a minimum of 3 steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1
foot (0.30 m) of the secured end. - 4) No bundle of deck shall be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless the following conditions are met: - a) The contractor has first determined from a "qualified person" and documented in a site-specific erection plan that the structure or portion of the structure is capable of supporting the load; - b) The bundle of decking is placed on a minimum of 3 steel joists; - c) The joists supporting the bundle of decking are attached at both ends; - d) At least one row of bridging is installed and anchored; - e) The total weight of the decking does not exceed 4000 pounds (1816 kilograms); and - f) The edge of the bundle of decking shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. - 5) The edge of the construction load shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. #### (c) Field Welding - 1) All field welding shall be performed in accordance with the contract documents. Field welding shall not damage the joists. - 2) On cold-formed members whose yield strength has been attained by cold working, and whose as-formed strength is used in the design, the total length of weld at any one point shall not exceed 50 percent of the overall developed width of the cold-formed section. #### (d) Handling Particular attention shall be considered for the handling and erection of **LH**- and **DLH**-Series steel joists. Care shall be exercised at all times to avoid damage to the joists and accessories. Hoisting cables shall be attached at panel point locations and those locations shall be selected to minimize erection stresses. Each joist shall be adequately braced laterally before any loads are applied. If lateral support is provided by bridging, the bridging lines as defined in Section 105(a), paragraphs 2, 3, 4 and 5 shall be anchored to prevent lateral movement. #### (e) Fall Arrest Systems Steel joists shall not be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person" (2). *For further reference, refer to Steel Joist Institute Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders." ⁽¹⁾ See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. for definition of "construction load". ⁽²⁾ See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. for definition of "qualified person". #### **DEFINITION OF SPAN** (U. S. Customary Units) **NOTES:** - 1) DESIGN LENGTH = SPAN 0.33 FT - 2) BEARING LENGTH FOR STEEL SUPPORTS SHALL NOT BE LESS THAN SHOWN IN TABLE 104.4-1; FOR MASONRY AND CONCRETE NOT LESS THAN 6 INCHES - 3) PARALLEL CHORD JOISTS INSTALLED TO A SLOPE GREATER THAN ½ INCH PER FOOT SHALL USE SPAN DEFINED BY THE LENGTH ALONG THE SLOPE. ## STANDARD LRFD LOAD TABLE #### **LONGSPAN STEEL JOISTS, LH-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD LH-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the factored LIVE load. The approximate joist weights do <u>not</u> include accessories. The RED figures in the Load Table represent the unfactored, uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored, uniform load for supplementary deflection criteria (i.e. an unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard ASD Load Table for Longspan Steel Joists, LH-Series. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j = 26.767 (W)(L³)(10⁻⁶), where W= RED figure in the Load Table, and L = (span – 0.33) in feet. ``` Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe factored uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe factored uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for an unfactored RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the unfactored RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table – 0.33 feet)² and divide by (the actual span – 0.33 feet)². In no case shall the calculated unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as determined from the Standard **ASD** Load Table for Longspan Steel Joists, **LH-**Series. #### LRFD | | | | | STANDARD | LOAD | | | | DANIS | | IOIS TS | 1 4 6 | EDIES | | | | | | _ | |-----------------|---------------|--------|-------|--|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | Rased | on a 50 ksi Ma | | | | | | | | | | Foot (n | lf) | | | | | | Joist | Approx. Wt | Depth | Max | SAFE LOAD* | AXIIIIGII | · ricia | otrong | tii Lo | 445 011 | O 1111 III | 1 Ourid | 5 1 61 1 | _iiicai i | 1001 (1 | , | | | | _ | | Designation | in Lbs. Per | in | Load | in Lbs. | | | | | | | SPA | N IN F | EET | | | | | | | | Ü | Linear Ft. | inches | (plf) | Between | | | | | | | | | | | | | | | | | | (Joists only) | | < 22 | 22-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | | | | 18LH02 | 10 | 18 | 829 | 18240 | 702 | 663 | 627 | 586 | 550 | 517 | 486 | 459 | 433 | 409 | 388 | | | | | | | | | | | 313 | 284 | 259 | 234 | 212 | 193 | 175 | 160 |
147 | 135 | 124 | 1 6 | | | | | 18LH03 | 11 | 18 | 919 | 20220 | 781 | 739 | 700 | 657 | 613 | 573 | 538 | 505 | 475 | 448 | 424 | | | | | | | | | | | 348 | 317 | 289 | 262 | 236 | 213 | 194 | 177 | 161 | 148 | 136 | | | | | | 18LH04 | 12 | 18 | 1070 | 23550 | 906 | 856 | 802 | 750 | 703 | 660 | 619 | 582 | 547 | 516 | 487 | | | | | | 4011105 | | 40 | 1010 | 00040 | 403 | 367 | 329 | 296 | 266 | 242 | 219 | 200 | 182 | 167 | 153 | | | | | | 18LH05 | 15 | 18 | 1210 | 26610 | 1026
454 | 972
414 | 921
378 | 871
345 | 814
311 | 762
282 | 714
256 | 672
233 | 631
212 | 595
195 | 562
179 | | | | | | 18LH06 | 15 | 18 | 1430 | 31470 | 1213 | 1123 | 1044 | 972 | 907 | 849 | 796 | 748 | 705 | 664 | 627 | | | | | | IOLHUO | 15 | 10 | 1430 | 31470 | 526 | 469 | 419 | 377 | 340 | 307 | 280 | 254 | 232 | 212 | 195 | | | | | | 18LH07 | 17 | 18 | 1485 | 32670 | 1260 | 1213 | 1170 | 1089 | 1017 | 952 | 892 | 838 | 789 | 744 | 703 | | | | | | TOLITOT | 1.7 | 10 | 1400 | 32070 | 553 | 513 | 476 | 428 | 386 | 349 | 317 | 288 | 264 | 241 | 222 | | | | | | 18LH08 | 19 | 18 | 1548 | 34050 | 1314 | 1264 | 1218 | 1176 | 1137 | 1075 | 1020 | 961 | 906 | 856 | 810 | | | | | | 102.100 | | | | 0.000 | 577 | 534 | 496 | 462 | 427 | 387 | 351 | 320 | 292 | 267 | 246 | | | | | | 18LH09 | 21 | 18 | 1658 | 36480 | 1404 | 1351 | 1302 | 1257 | 1215 | 1174 | 1138 | 1069 | 1006 | 949 | 897 | 1 | | | | | 90.00238690.450 | | 2000 | | COST TO STATE OF THE T | 616 | 571 | 527 | 491 | 458 | 418 | 380 | 346 | 316 | 289 | 266 | | | | | | | | | < 23 | 23-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 20LH02 | 10 | 20 | 747 | 17190 | 663 | 655 | 646 | 615 | 582 | 547 | 516 | 487 | 460 | 436 | 412 | 393 | 373 | 355 | 337 | | | | | | | 306 | 303 | 298 | 274 | 250 | 228 | 208 | 190 | 174 | 160 | 147 | 136 | 126 | 117 | 108 | | 20LH03 | 11 | 20 | 793 | 18240 | 703 | 694 | 687 | 678 | 651 | 621 | 592 | 558 | 528 | 499 | 474 | 448 | 424 | 403 | 382 | | | | | | | 337 | 333 | 317 | 302 | 280 | 258 | 238 | 218 | 200 | 184 | 169 | 156 | 143 | 133 | 123 | | 20LH04 | 12 | 20 | 972 | 22350 | 861 | 849 | 837 | 792 | 744 | 700 | 660 | 624 | 589 | 558 | 529 | 502 | 477 | 454 | 433 | | 0011105 | 14 | | 1015 | 0.4000 | 428
924 | 406
913 | 386 | 352 | 320 | 291 | 265 | 243
726 | 223
687 | 205
651 | 189 | 174 | 161 | 149 | 139
504 | | 20LH05 | 14 | 20 | 1045 | 24030 | 924
459 | 913
437 | 903
416 | 892
395 | 856
366 | 816
337 | 769
308 | 281 | 258 | 238 | 616
219 | 585
202 | 556
187 | 529
173 | 161 | | 20LH06 | 15 | 20 | 1394 | 32070 | 1233 | 1186 | 1144 | 1084 | 1018 | 952 | 894 | 840 | 790 | 745 | 703 | 666 | 631 | 598 | 568 | | 2011100 | 13 | 20 | 1354 | 32070 | 606 | 561 | 521 | 477 | 427 | 386 | 351 | 320 | 292 | 267 | 246 | 226 | 209 | 192 | 178 | | 20LH07 | 17 | 20 | 1487 | 34200 | 1317 | 1267 | 1221 | 1179 | 1140 | 1066 | 1000 | 940 | 885 | 834 | 789 | 745 | 706 | 670 | 637 | | 202.101 | | | | 01200 | 647 | 599 | 556 | 518 | 484 | 438 | 398 | 362 | 331 | 303 | 278 | 256 | 236 | 218 | 202 | | 20LH08 | 19 | 20 | 1534 | 35280 | 1362 | 1309 | 1263 | 1219 | 1177 | 1140 | 1083 | 1030 | 981 | 931 | 882 | 837 | 795 | 754 | 718 | | | | | | | 669 | 619 | 575 | 536 | 500 | 468 | 428 | 395 | 365 | 336 | 309 | 285 | 262 | 242 | 225 | | 20LH09 | 21 | 20 | 1679 | 38610 | 1485 | 1429 | 1377 | 1329 | 1284 | 1242 | 1203 | 1167 | 1132 | 1068 | 1009 | 954 | 904 | 858 | 816 | | | | | | | 729 | 675 | 626 | 581 | 542 | 507 | 475 | 437 | 399 | 366 | 336 | 309 | 285 | 264 | 244 | | 20LH10 | 23 | 20 | 1810 | 41640 | 1602 | 1542 | 1486 | 1434 | 1386 | 1341 | 1297 | 1258 | 1221 | 1186 | 1122 | 1060 | 1005 | 954 | 906 | | | | | | | 786 | 724 | 673 | 626 | 585 | 545 | 510 | 479 | 448 | 411 | 377 | 346 | 320 | 296 | 274 | #### LRFD | | | | | S | TANDARD | LOAD | | | | PAN ST | | DISTS. | LH-SEF | RIES | | | | | | — | |------------------------|---------------------------|-------------|---|---|-----------------------|---------------------|---------------------|--------------------|--------------------|--------------------|-------------|--------------|------------------|-------------|-------------|---------------|-------------|------------|------------|-------------------| | | | | | ed on a | 50 ksi Ma | | | | | | | | | | ot (plf) | | | | | | | Joist
Designation | Approx. Wt
in Lbs. Per | Depth
in | Max
Load | | ELOAD*
n Lbs. | | | | | | | SPA | AN IN F | EET | | | | | | | | ŭ | Linear Ft. | inches | (plf) | | etween | | | | .= | | | | | - 10 | - 40 | | | 40 | | | | 24LH03 | (Joists only)
11 | 24 | < 29 601 | | 2 9-33
7430 | 34 513 | 35
508 | 36
504 | 37
484 | 38
460 | 39
439 | 40
418 | 4100 | 42
382 | 43
366 | 351 | 45
336 | 46
322 | 47
310 | 298 | | 2411104 | 40 | 0.4 | 707 | | 21360 | 235 | 226 | 218 | 204 | 188 | 175 | 162 | 152 | 141 | 132 | 124 | 116 | 109 | 102 | 96 | | 24LH04 | 12 | 24 | 737 | | 1300 | 628
288 | 597
265 | 568
246 | 540
227 | 514
210 | 490
195 | 468
182 | 447
169 | 427
158 | 409
148 | 393
138 | 376
130 | 361
122 | 346
114 | 333
107 | | 24LH05 | 13 | 24 | 789 | 2 | 22890 | 673
308 | 669
297 | 660
285 | 628
264 | 598
244 | 570
226 | 544
210 | 520
196 | 496
182 | 475
171 | 456
160 | 436
150 | 420
141 | 403
132 | 387
124 | | 24LH06 | 16 | 24 | 1061 | 3 | 30780 | 906 | 868 | 832 | 795 | 756 | 720 | 685 | 655 | 625 | 598 | 571 | 546 | 522 | 501 | 480 | | 24LH07 | 17 | 24 | 1166 | 3 | 33810 | 411
997 | 382
957 | 356
919 | 331
882 | 306
847 | 284
811 | 263
774 | 245
736 | 702 | 211
669 | 197
639 | 184
610 | 583 | 559 | 53 | | 24 1000000 000000000 | 651 | 2.58 | 200000000000000000000000000000000000000 | | | 452 | 421 | 393 | 367 | 343 | 320 | 297 | 276 | 257 | 239 | 223 | 208 | 195 | 182 | 171 | | 24LH08 | 18 | 24 | 1243 | 3 | 86060 | 1060
480 | 1015
447 | 973
416 | 933
388 | 895
362 | 858
338 | 817
314 | 780
292 | 745
272 | 712
254 | 682
238 | 652
222 | 625
208 | 600
196 | 576
184 | | 24LH09 | 21 | 24 | 1464 | 4 | 12450 | 1248 | 1212 | 1177 | 1146 | 1096 | 1044 | 994 | 948 | 903 | 861 | 822 | 786 | 751 | 720 | 690 | | 24LH10 | 23 | 24 | 1547 | 4 | 14850 | 562
1323 | 530
1284 | 501
1248 | 460
1213 | 424
1182 | 393
1152 | 363
1105 | 337
1053 | 313
1002 | 292
955 | 272
912 | 254
873 | 238
834 | 799 | 766 | | 24LH11 | 25 | 24 | 1630 | | 7280 | 596
1390 | 559
1350 | 528
1312 | 500
1276 | 474
1243 | 439
1210 | 406
1180 | 378
1152 | 351
1101 | 326
1051 | 304
1006 | 285
963 | 266
924 | 249
885 | 234
850 | | 2441111 | 23 | 24 | 1030 | ×-1 | 77200 | 624 | 588 | 555 | 525 | 498 | 472 | 449 | 418 | 388 | 361 | 337 | 315 | 294 | 276 | 259 | | 28LH05 | 13 | 28 | < 34 623 | | 21180 | 42 505 | 484 | 44
465 | 45 | 46
429 | 412 | 48 | 49
382 | 50 | 51 | 52 342 | 53
330 | 54 | 55 | 298 | | ZOLHUS | 13 | 20 | 623 | | 1100 | 219 | 205 | 192 | 180 | 169 | 159 | 150 | 142 | 133 | 126 | 119 | 113 | 107 | 102 | 97 | | 28LH06 | 16 | 28 | 828 | 2 | 28140 | 672
289 | 643
270 | 618
253 | 592
238 | 568
223 | 546
209 | 525
197 | 505
186 | 486
175 | 469
166 | 451
156 | 436
148 | 421
140 | 406
133 | 39:
12 | | 28LH07 | 17 | 28 | 934 | 3 | 31770 | 757 | 726 | 696 | 667 | 640 | 615 | 591 | 568 | 547 | 528 | 508 | 490 | 474 | 457 | 442 | | 28LH08 | 18 | 28 | 1001 | 3 | 34020 | 326
810 | 305
775 | 285
744 | 267
712 | 251
684 | 236
657 | 630 | 209
604 | 197
580 | 186
556 | 176
535 | 166
516 | 158
496 | 150
478 | 462 | | N1 494/19-4920/239-XX- | 777.00 | 01-322 | | | | 348 | 325 | 305 | 285 | 268 | 252 | 236 | 222 | 209 | 196 | 185 | 175 | 165 | 156 | 148 | | 28LH09 | 21 | 28 | 1232 | 4 | 1880 | 1000
428 | 958
400 | 918
375 | 879
351 | 844
329 | 810
309 | 778
291 | 748
274 | 721
258 | 694
243 | 669
228 | 645
216 | 622
204 | 601
193 | 580
183 | | 28LH10 | 23 | 28 | 1347 | 4 | 15810 | 1093 | 1056 | 1018 | 976 | 937 | 900 | 864 | 831 | 799 | 769 | 742 | 715 | 690 | 666 | 643 | | 28LH11 | 25 | 28 | 1445 | 4 | 19140 | 466
1170 | 439
1143 | 414
1104 | 388
1066 | 364
1023 | 342
982 | 322
943 | 303
907 | 285
873 | 269
841 | 255
810 | 241
781 | 228
753 | 215
727 | 702 | | 28LH12 | 27 | 28 | 1587 | | 3970 | 498
1285 | 475
1255 | 448
1227 | 423
1200 | 397
1173 | 373
1149 | 351
1105 | 331
1063 | 312
1023 | 294
984 | 278
948 | 263
913 | 249
880 | 236
849 | 819 | | 20LH 12 | 21 | 20 | 1307 | | | 545 | 520 | 496 | 476 | 454 | 435 | 408 | 383 | 361 | 340 | 321 | 303 | 285 | 270 | 256 | | 28LH13 | 30 | 28 | 1654 | 5 | 6250 | 1342
569 | 1311
543 | 1281
518 | 1252
495 | 1224
472 | 1198
452 | 1173
433 | 1149
415 | 1126
396 | 1083
373 | 1041
352 | 1002
332 | 964
314 | 930
297 | 897
281 | | | | | < 39 | 39-46 | 47-49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | | 32LH06 | 14 | 32 | 647 | 25230 | 25230 | 507
211 | 489
199 | 472
189 | 456
179 | 441
169 | 426
161 | 412
153 | 399
145 | 385
138 | 373
131 | 363
125 | 351
119 | 340
114 | 330
108 | 321
104 | | 32LH07 | 16 | 32 | 728 | 28380 | 28380 | 568 | 549 | 529 | 511 | 493 | 477 | 462 | 447 | 432 | 418 | 406 | 393 | 381 | 370 | 360 | | 32LH08 | 17 | 32 | 790 | 30810 | 30810 | 616 | 595 | 211
574 | 553 | 189
535 | 517 | -170
-499 | 162
483 | 154 | 146
453 | 140
439 | 133
426 | 127
412 | 121
400 | 38 | | 0011100 | ***** | 00 | 000 |
10000000 9000 | 38670 | 255 | 242 | 229 | 216 | 205 | 194 | 184 | 175 | 167 | 159 | 151 | 144 | 137 | 131 | 12 | | 32LH09 | 21 | 32 | 992 | 38670 | 30070 | 774
319 | 747
302 | 720
285 | 694
270 | 670
256 | 648
243 | 627
230 | 606
219 | 586
208 | 568
198 | 550
189 | 534
180 | 517
172 | 502
164 | 48
15 | | 32LH10 | 21 | 32 | 1096 | 42750 | 42750 | 856
352 | 825
332 | 796
315 | 768
297 | 742
282 | 717
267 | 693
254 | 667
240 | 645
228 | 624
217 | 603
206 | 583
196 | 564
186 | 546
178 | 529
169 | | 32LH11 | 24 | 32 | 1201 | 46830 | 46830 | 937 | 903 | 870 | 840 | 811 | 783 | 757 | 732 | 709 | 687 | 664 | 643 | 624 | 604 | 585 | | 32LH12 | 27 | 32 | 1409 | 54960 | 54960 | 385
1101 | 363
1068 | 343
1032 | 325
996 | 308
961 | 292
928 | 277
897 | 263
867 | 251
838 | 239
811 | 227
786 | 216
762 | 206
738 | 196
715 | 18 | | 600,000,000,000 | W 823 | 500000 | 2000000000 | 100000000000000000000000000000000000000 | | 450 | 428 | 406 | 384 | 364 | 345 | 327 | 311 | 295 | 281 | 267 | 255 | 243 | 232 | 22 | | 32LH13 | 30 | 32 | 1572 | 61320 | 61320 | 1225
500 | 1201
480 | 1177
461 | 1156
444 | 1113
420 | 1072
397 | 1035
376 | 999
354 | 964
336 | 931
319 | 900
304 | 871
288 | 843
275 | 816
262 | 790 | | 32LH14 | 33 | 32 | 1618 | 63120 | 63120 | 1264 | 1239 | 1215 | 1192 | 1170 | 1149 | 1107 | 1069 | 1032 | 997 | 964 | 933 | 903 | 874 | 846 | | 32LH15 | 35 | 32 | 1673 | 65250 | 65250 | 515
1305 | 495
1279 | 476
1255 | 458
1231 | 440
1207 | 417
1186 | 395
1164 | 374
1144 | 355
1125 | 337
1087 | 321
1051 | 304
1017 | 290
984 | 952 | 924 | | | | | < 43 | | 47-56 57 | 532
58 | 511
59 | 492
60 | 473
61 | 454
62 | 438
63 | 422
64 | 407
65 | 393
66 | 374
67 | 355
68 | 338 | 322 | 306 | 292 | | 36LH07 | 16 | 36 | 590 | 25350 | 25350 | 438 | 424 | 411 | 399 | 387 | 376 | 366 | 355 | 345 | 336 | 327 | 318 | 310 | 301 | 294 | | 36LH08 | 18 | 36 | 649 | 27900 | 27900 | 481 | 168
466 | 160
453 | 153
439 | 146
426 | 140
414 | 134
402 | 128
390 | 122
379 | 117
369 | 112
358 | 107
349 | 103
340 | 99
331 | 95
32 | | 500.040.400.000.000.0 | 777.00 | 1000 | | 25.00,000,000,000 | | 194 | 185 | 176 | 168 | 160 | 153 | 146 | 140 | 134 | 128 | 123 | 118 | 113 | 109 | 10 | | 36LH09 | 21 | 36 | 832 | 35760 | 35760 | 616
247 | 597
-235 | 579
224 | 561
214 | 544
204 | 528
195 | 513
186 | 499
179 | 484
171 | 471
163 | 459
157 | 445
150 | 433
144 | 423
138 | 133 | | 36LH10 | 21 | 36 | 916 | 39390 | 39390 | 681 | 660 | 639 | 619 | 601 | 583 | 567 | 550 | 535 | 520 | 507 | 492 | 480 | 466 | 454 | | | 23 | 36 | 1000 | 42990 | 42990 | 273
742 | 720 | 248
697 | 236
676 | 225
657 | 215
637 | 206
618 | 197
601 | 188
583 | 180
567 | 173
552 | 165
537 | 159
522 | 152
508 | 495 | | 36LH11 | | | 1197 | | 51450 | 297 | 283 | 269 | 257 | 246 | 234 | 224 | 214 | 205 | 196 | 188 | 180 | 173 | 166 | 159 | | | 25 | 20 | | 51450 | 31430 | 889 | 862 | 835
322 | 810
307 | 784
292 | 762
279 | 739
267 | 717
255 | 696
243 | 675
232 | 655
222 | 636
213 | 618
204 | 600
195 | 58
18 | | 36LH11
36LH12 | 25 | 36 | 1101 | | | 354 | 338 | 322 | 007 | | | | | | | | | | | ALC: UNKNOWN | | | 25
30 | 36 | 1407 | 60510 | 60510 | 1045 | 1012 | 981 | 951 | 922 | 894 | 868 | 843 | 819
285 | 796
273 | 774 | 753
251 | 732 | 712 | | | 36LH12 | 2 4.5 | - | | 60510
66690 | 60510
66690 | 1045
415
1152 | 1012
395
1132 | 981
376
1093 | 951
359
1059 | 922
342
1024 | 327
991 | 312
961 | 298
931 | 285
903 | 273
876 | 262
850 | 251
826 | 240
802 | 231
780 | 757 | | 36LH12
36LH13 | 30 | 36 | 1407 | | | 1045
415 | 1012
395 | 981
376 | 951
359 | 922
342 | 327 | 312 | 298 | 285 | 273 | 262 | 251 | 240 | 231 | 757
237
826 | #### LRFD | | | | | | ANDAR | | | | LONG | | | | | | | | | | | | |------------------|---------------------------|--------------|---------------|--------------------|--------------|------------------|-------------|-------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------| | | | | | d on a t | | laximu | ım Yiel | d Stren | gth - L | oads S | nown l | n Poun | ds Per | Linear | Foot (| olf) | | | | | | Joist | Approx. Wt | Depth | Max | SAFE | | | | | | | | en. | AN IN F | CET | | | | | | | | Designation | in Lbs. Per
Linear Ft. | in
inches | Load
(plf) | | .bs.
veen | | | | | | | 5P/ | AIN IIN F | EEI | | | | | | | | | (Joists Only) | IIICHES | < 48 | 48-59 | | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 40LH08 | 16 | 40 | 521 | 25020 | 25020 | 381 | 370 | 361 | 351 | 342 | 333 | 325 | 316 | 309 | 301 | 294 | 288 | 280 | 274 | 267 | | 10.2.1.0.2 | 1.00 | 3.5 | T-1000 | | | 150 | 144 | 138 | 132 | 127 | 122 | 117 | 112 | 108 | 104 | 100 | 97 | 93 | 90 | 86 | | 40LH09 | 21 | 40 | 685 | 32880 | 32880 | 498 | 484 | 472 | 459 | 447 | 436 | 424 | 414 | 403 | 394 | 384 | 375 | 366 | 358 | 349 | | | | - 10 | | | | 196 | 1.88 | 180 | 173 | 166 | 160 | 153 | 147 | 141 | 136 | 131 | 126 | 122 | 118 | 113 | | 40LH10 | 21 | 40 | 754 | 36180 | 36180 | 550
216 | 535
207 | 520
198 | 507
190 | 493
183 | 481
176 | 469
169 | 457
162 | 445
156 | 435
150 | 424
144 | 414
139 | 403
134 | 393
129 | 382
124 | | 40LH11 | 22 | 40 | 823 | 39510 | 39510 | 598 | 582 | 567 | 552 | 537 | 523 | 510 | 498 | 484 | 472 | 462 | 450 | 439 | 429 | 418 | | | | | | | | 234 | 224 | 215 | 207 | 198 | 190 | 183 | 176 | 169 | 163 | 157 | 151 | 145 | 140 | 13 | | 40LH12 | 25 | 40 | 1002 | 48090 | 48090 | 729 | 708 | 688 | 670 | 652 | 636 | 619 | 603 | 588 | 573 | 559 | 546 | 532 | 519 | 50 | | | | | | | 100000 | 285 | 273 | 261 | 251 | 241 | 231 | 222 | 213 | 205 | 197 | 189 | 182 | 176 | 169 | 16: | | 40LH13 | 30 | 40 | 1181 | 56700 | 56700 | 859
334 | 835
320 | 813
307 | 792 | 771
283 | 750
271 | 730 | 712
250 | 694
241 | 676
231 | 660
223 | 643
214 | 628
207 | 613
199 | 598
192 | | 40LH14 | 35 | 40 | 1351 | 64830 | 64830 | 984 | 957 | 930 | 295
904 | 880 | 856 | 260
834 | 813 | 792 | 772 | 753 | 735 | 717 | 699 | 682 | | TOLITIT | 55 | 40 | 1001 | 04000 | 04000 | 383 | 367 | 351 | 336 | 323 | 309 | 297 | 285 | 273 | 263 | 252 | 243 | 233 | 225 | 216 | | 40LH15 | 36 | 40 | 1511 | 72510 | 72510 | 1101 | 1068 | 1036 | 1006 | 978 | 949 | 924 | 898 | 874 | 850 | 828 | 807 | 786 | 766 | 74 | | | | | | | | 427 | 408 | 390 | 373 | 357 | 342 | 328 | 315 | 302 | 290 | 279 | 268 | 258 | 248 | 23 | | 40LH16 | 42 | 40 | 1665 | 79920 | 79920 | 1212 | 1194 | 1176 | 1158 | 1141 | 1126 | 1095 | 1065 | 1036 | 1009 | 982 | 957 | 933 | 909 | 886 | | | | | < 53 | 53-59 | 60-73 | 469
74 | 455
75 | 441
76 | 428
77 | 416
78 | 404
79 | 387
80 | 371
81 | 356
82 | 342
83 | 329
84 | 316
85 | 304
86 | 292
87 | 28: | | 44LH09 | 19 | 44 | 569 | 30150 | 30150 | 408 | 397 | 388 | 379 | 370 | 363 | 354 | 346 | 339 | 331 | 324 | 316 | 310 | 303 | 29 | | 4421100 | 10 | | 000 | 00100 | 00100 | 158 | 152 | 146 | 141 | 136 | 131 | 127 | 122 | 118 | 114 | 110 | 106 | 103 | 99 | 96 | | 44LH10 | 21 | 44 | 628 | 33300 | 33300 | 450 | 439 | 429 | 418 | 408 | 399 | 390 | 381 | 373 | 364 | 357 | 349 | 342 | 334 | 32 | | | | | | | alala | 174 | 168 | 162 | 155 | 150 | 144 | 139 | 134 | 130 | 125 | 121 | 117 | 113 | 110 | 100 | | 44LH11 | 22 | 44 | 679 | 36000 | 36000 | 487 | 475 | 465 | 453 | 442 | 433 | 423 | 414 | 403 | 396 | 387 | 378 | 370 | 363 | 354 | | 44LH12 | 25 | 44 | 842 | 44610 | 44610 | 188
603 | 181
589 | 175
574 | 168
561 | 162
547 | 157
534 | 151
520 | 146
508 | 140
496 | 136
484 | 131
472 | 127
462 | 123
450 | 119
439 | 430 | | 44LD12 | 25 | 44 | 042 | 44010 | 44010 | 232 | 224 | 215 | 207 | 200 | 192 | 185 | 179 | 172 | 166 | 160 | 155 | 149 | 144 | 13 | | 44LH13 | 30 | 44 | 998 | 52890 | 52890 | 715 | 699 | 681 | 666 | 649 | 634 | 619 | 606 | 592 | 579 | 565 | 553 | 541 | 529 | 51 | | 10 (CO)042/WW-20 | Asserce | | 2.10.202598 | 2000//5/20120005 | | 275 | 265 | 254 | 246 | 236 | 228 | 220 | 212 | 205 | 198 | 191 | 185 | 179 | 173 | 16 | | 44LH14 | 31 | 44 | 1148 | 60870 | 60870 | 823 | 801 | 780 | 759 | 739 | 721 | 703 | 685 | 669 | 654 | 637 | 622 | 609 | 594 | 580 | | 1411146 | 20 | | 1000 | 70000 | 70000 | 315 | 302 | 291 | 279 | 268 | 259 | 249 | 240 | 231 | 223 | 215 | 207 | 200 | 193 | 18 | | 44LH15 | 36 | 44 | 1336 | 70830 | 70830 | 958
366 | 934
352 | 912
339 | 889
326 | 868
314 | 847
303 | 826
292 | 805
281 | 786
271 | 768
261 | 750
252 | 732
243 | 714
234 | 699 | 682 | | 44LH16 | 42 | 44 | 1541 | 81660 | 81660 | 1105 | 1078 | 1051 | 1026 | 1002 | 978 | 955 | 933 | 912 | 891 | 870 | 852 | 832 | 814 | 790 | | 3 1-132 - | | | 3/E 3/E | | | 421 | 405 | 390 | 375 | 362 | 348 | 336 | 324 | 313 | 302 | 291 | 282 | 272 | 263 | 25 | | 44LH17 | 47 | 44 | 1655 | 87690 | 87690 | 1185 | 1170 | 1153 | 1138 | 1125 | 1098 | 1072 | 1048 | 1024 | 1000 | 978 | 957 | 936 | 915 | 895 | | | | | | == == | 00000 | 450 | 438 | 426 | 415 | 405 | 390 | 376 | 363 | 351 | 338 | 327 | 316 | 305 | 295 | 28 | | 48LH10 | 21 | 48 | < 57 | 57-59 30120 | 60-81 | 82
369 | 83
361 | 354 | 85 | 339 | 331 | 325 | 89
318 | 90
312 | 91
306 | 92
300 | 93
294 | 94
288 | 95
282 | 27 | | 48LH10 | 21 | 48 | 528 | 30120 | 30120 | 141 | 136 | 132 | 127 | 123 | 119 | 325
116 | 112 | 108 | 105 | 102 | 294 | 288
96 | 93 | 90 | | 48LH11 | 22 | 48 | 573
 32670 | 32670 | 399 | 390 | 382 | 373 | 366 | 358 | 351 | 343 | 337 | 330 | 324 | 318 | 312 | 306 | 300 | | 555-460000000 80 | 5.500 | 9555 | DOMESTIC: | | | 152 | 147 | 142 | 137 | 133 | 129 | 125 | 120 | 117 | 113 | 110 | 106 | 103 | 100 | 97 | | 48LH12 | 25 | 48 | 724 | 41250 | 41250 | 504 | 493 | 483 | 472 | 462 | 451 | 442 | 433 | 424 | 415 | 408 | 399 | 391 | 384 | 37 | | 4011140 | 29 | 48 | 067 | 40440 | 49410 | 191
603 | 185 | 179 | 173 | 167
552 | 161
540 | 156 | 151
517 | 507 | 142 | 138
487 | 133 | 129
468 | 126 | 12 | | 48LH13 | 29 | 48 | 867 | 49410 | 49410 | 228 | 589
221 | 576
213 | 564
206 | 552
199 | 193 | 529
187 | 51 /
180 | 175 | 498
170 | 487
164 | 477
159 | 154 | 459
150 | 45
14 | | 48LH14 | 32 | 48 | 1023 | 58290 | 58290 | 712 | 696 | 681 | 666 | 651 | 637 | 624 | 610 | 598 | 585 | 574 | 562 | 550 | 540 | 52 | | | | | .020 | 20230 | | 269 | 260 | 251 | 243 | 234 | 227 | 220 | 212 | 206 | 199 | 193 | 187 | 181 | 176 | 17 | | 48LH15 | 36 | 48 | 1176 | 67020 | 67020 | 817 | 799 | 781 | 765 | 748 | 732 | 717 | 702 | 687 | 672 | 658 | 645 | 633 | 619 | 60 | | 1011111 | | | 10 | | district. | 308 | 298 | 287 | 278 | 269 | 260 | 252 | 244 | 236 | 228 | 221 | 214 | 208 | 201 | 19 | | 48LH16 | 42 | 48 | 1355 | 77250 | 77250 | 943 | 922 | 901 | 882 | 864 | 844 | 826 | 810 | 792 | 777 | 760 | 745 | 730 | 715 | 70 | | 48LH17 | 47 | 48 | 1522 | 86760 | 86760 | 355
1059 | 343
1035 | 331
1012 | 320
990 | 310
969 | 299
948 | 289
928 | 909 | 271
889 | 263
871 | 255
853 | 247
837 | 239
820 | 232
804 | 78 | | TOLITI | → / | -0 | 1022 | 00700 | 00700 | 397 | 383 | 371 | 358 | 346 | 335 | 324 | 314 | 304 | 294 | 285 | 276 | 268 | 260 | 25 | ## STANDARD ASD LOAD TABLE ### **LONGSPAN STEEL JOISTS, LH-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 25, 1983 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD LH-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load that will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j = 26.767(W)(L³)(10⁻⁶), where W= RED figure in the Load Table, and L = (span – 0.33) in feet. ``` Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for a RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table - 0.33 feet)² and divide by (the actual span - 0.33 feet)². In no case shall the calculated load exceed the TOTAL load-carrying capacity of the joist. | | | | | OTANDA. | 20101 | | | | | 07551 | 10107 | | o E DIE | | | | | | _ | |----------------|---------------|---|-------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | Race | STANDAI
d on a 50 ksi | | | | | | | | | | | nlf\ | | | | | | Joist | Approx. Wt | Depth | Max | SAFE LOAD* | VIGAIIII | ann 110 | u ouci | igiii - L | .ouus c | , iiowiii | iii i oui | ius i ci | Lilicui | 1 001 (| PIII) | | | | _ | | Designation | in Lbs. Per | in | Load | in Lbs. | | | | | | | SPA | N IN F | EET | | | | | | | | 2 congriculor. | Linear Ft. | inches | (plf) | Between | | | | | | | | | | | | | | | | | | (Joists only) | | < 22 | 22-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | | | | 18LH02 | 10 | 18 | 553 | 12160 | 468 | 442 | 418 | 391 | 367 | 345 | 324 | 306 | 289 | 273 | 259 | | | | | | 102.102 | | | | | 313 | 284 | 259 | 234 | 212 | 193 | 175 | 160 | 147 | 135 | 124 | | | | | | 18LH03 | 11 | 18 | 613 | 13480 | 521 | 493 | 467 | 438 | 409 | 382 | 359 | 337 | 317 | 299 | 283 | | | | | | | | | | | 348 | 317 | 289 | 262 | 236 | 213 | 194 | 177 | 161 | 148 | 136 | | | | | | 18LH04 | 12 | 18 | 714 | 15700 | 604 | 571 | 535 | 500 | 469 | 440 | 413 | 388 | 365 | 344 | 325 | | | | | | | | | | | 403 | 367 | 329 | 296 | 266 | 242 | 219 | 200 | 182 | 167 | 153 | | | | | | 18LH05 | 15 | 18 | 806 | 17740 | 684 | 648 | 614 | 581 | 543 | 508 | 476 | 448 | 421 | 397 | 375 | | | | | | | | | | | 454 | 414 | 378 | 345 | 311 | 282 | 256 | 233 | 212 | 195 | 179 | | | | | | 18LH06 | 15 | 18 | 954 | 20980 | 809 | 749 | 696 | 648 | 605 | 566 | 531 | 499 | 470 | 443 | 418 | | | | | | | | | | | 526 | 469 | 419 | 377 | 340 | 307 | 280 | 254 | 232 | 212 | 195 | | | | | | 18LH07 | 17 | 18 | 990 | 21780 | 840 | 809 | 780 | 726 | 678 | 635 | 595 | 559 | 526 | 496 | 469 | | | | | | | | | | | 553 | 513 | 476 | 428 | 386 | 349 | 317 | 288 | 264 | 241 | 222 | | | | | | 18LH08 | 19 | 18 | 1032 | 22700 | 876 | 843 | 812 | 784 | 758 | 717 | 680 | 641 | 604 | 571 | 540 | | | | | | | | | | | 577 | 534 | 496 | 462 | 427 | 387 | 351 | 320 | 292 | 267 | 246 | | | | | | 18LH09 | 21 | 18 | 1105 | 24320 | 936 | 901 | 868 | 838 | 810 | 783 | 759 | 713 | 671 | 633 | 598 | | | | | | | | | | | 616 | 571 | 527 | 491 | 458 | 418 | 380 | 346 | 316 | 289 | 266 | | | | | | | | | < 23 | 23-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 20LH02 | 10 | 20 | 498 | 11460 | 442 | 437 | 431 | 410 | 388 | 365 | 344 | 325 | 307 | 291 | 275 | 262 | 249 | 237 | 225 | | | | | | | 306 | 303 | 298 | 274 | 250 | 228 | 208 | 190 | 174 | 160 | 147 | 136 | 126 | 117 | 108 | | 20LH03 | 11 | 20 | 529 | 12160 | 469 | 463 | 458 | 452 | 434 | 414 | 395 | 372 | 352 | 333 | 316 | 299 | 283 | 269 | 255 | | 0011104 | 40 | -00 | 040 | 11000 | 337 | 333
566 | 317 | 302 | 280 | 258
467 | 238 | 218 | 200 | 184 | 169 | 156 | 143 | 133 | 123
289 | | 20LH04 | 12 | 20 | 648 | 14900 | 574
428 | 406 | 558
386 | 528
352 | 496 | 291 | 440 | 416 | 393
223 | 372
205 | 353 | 335 | 318
161 | 303 | 139 | | 20LH05 | 14 | 20 | 697 | 16020 | 616 | 609 | 602 | 595 | 320
571 | 544 | 265
513 | 243
484 | 458 | 434 | 189
411 | 174
390 | 371 | 149
353 | 336 | | 201103 | 14 | 20 | 091 | 10020 | 459 | 437 | 416 | 395 | 366 | 337 | 308 | 281 | 258 | 238 | 219 | 202 | 187 | 173 | 161 | | 20LH06 | 15 | 20 | 930 | 21380 | 822 | 791 | 763 | 723 | 679 | 635 | 596 | 560 | 527 | 497 | 469 | 444 | 421 | 399 | 379 | | 2011100 | 10 | 20 | 950 | 21300 | 606 | 561 | 521 | 477 | 427 | 386 | 351 | 320 | 292 | 267 | 246 | 226 | 209 | 192 | 178 | | 20LH07 | 17 | 20 | 991 | 22800 | 878 | 845 | 814 | 786 | 760 | 711 | 667 | 627 | 590 | 556 | 526 | 497 | 471 | 447 | 425 | | | | | | | 647 | 599 | 556 | 518 | 484 | 438 | 398 | 362 | 331 | 303 | 278 | 256 | 236 | 218 | 202 | | 20LH08 | 19 | 20 | 1023 | 23520 | 908 | 873 | 842 | 813 | 785 | 760 | 722 | 687 | 654 | 621 | 588 | 558 | 530 | 503 | 479 | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 669 | 619 | 575 | 536 | 500 | 468 | 428 | 395 | 365 | 336 | 309 | 285 | 262 | 242 | 225 | | 20LH09 | 21 | 20 | 1119 | 25740 | 990 | 953 | 918 | 886 | 856 | 828 | 802 | 778 | 755 | 712 | 673 | 636 | 603 | 572 | 544 | | | | | | | 729 | 675 | 626 | 581 | 542 | 507 | 475 | 437 | 399 | 366 | 336 | 309 | 285 | 264 | 244 | | 20LH10 | 23 | 20 | 1207 | 27760 | 1068 | 1028 | 991 | 956 | 924 | 894 | 865 | 839 | 814 | 791 | 748 | 707 | 670 | 636 | 604 | | | | | | | 786 | 724 | 673 | 626 | 585 | 545 | 510 | 479 | 448 | 411 | 377 | 346 | 320 | 296 | 274 | | | | - | | | RD LOAD TAB | | | | | | | | | | 4 /- | .10 | | | | | |-------------
---------------------------|--------------|--------------------|-----------------------|---|-----------------------|---------------|-----------------------|---------------|---------------|---------------|--------------------|---------------|---------------|---------------|---------------|------------|---------------|--------------------|---------------| | Joist | Approx. Wt | Depth | sed on
Max | | si Maximum Y
AFELOAD* | iela S | trengt | n - Lo | ads S | nown | In Po | | | | -00t (p | olf) | | | | - | | Designation | in Lbs. Per
Linear Ft. | in
inches | Load
(plf) | | in Lbs.
Between | | | | | | | SPA | N IN F | EET | | | | | | | | 241 1102 | (Joists only) | 24 | < 29 | | 29-33
11620 | 34
342 | 35 | 36 | 37
323 | 38 | 39 293 | 40 279 | 41 267 | 42 255 | 43
244 | 234 | 45
224 | 46 215 | 47 207 | 48 | | 24LH03 | 11 | | | | | 235 | 226 | 218 | 204 | 188 | 175 | 162 | 152 | 141 | 132 | 124 | 116 | 109 | 102 | 96 | | 24LH04 | 12 | 24 | 491 | | 14240 | 419
288 | 398
265 | 379
246 | 360
227 | 343
210 | 327
195 | 312
182 | 298
169 | 285
158 | 273
148 | 262
138 | 251
130 | 241
122 | 231
114 | 222
107 | | 24LH05 | 13 | 24 | 526 | | 15260 | 449
308 | 446
297 | 440
285 | 419
264 | 399
244 | 380
226 | 363
210 | 347
196 | 331
182 | 317
171 | 304
160 | 291
150 | 280 | 269
132 | 258
124 | | 24LH06 | 16 | 24 | 708 | | 20520 | 604 | 579 | 555 | 530 | 504 | 480 | 457 | 437 | 417 | 399 | 381 | 364 | 348 | 334 | 320 | | 24LH07 | 17 | 24 | 777 | | 22540 | 411
665 | 382
638 | 356
613 | 331
588 | 306
565 | 284
541 | 263
516 | 245
491 | 228
468 | 211
446 | 197
426 | 184
407 | 389 | 373 | 152
357 | | 24LH08 | 18 | 24 | 829 | | 24040 | 452
707 | 421
677 | 393
649 | 367
622 | 343
597 | 320
572 | 297
545 | 276
520 | 257
497 | 239
475 | 223
455 | 208
435 | 195
417 | 182
400 | 171
384 | | 24LH09 | 21 | 24 | 976 | | 28300 | 480
832 | 808 | 416
785 | 388
764 | 362
731 | 338
696 | 314
663 | 292
632 | 272
602 | 254
574 | 238
548 | 222
524 | 208
501 | 196
480 | 184
460 | | 24LH10 | 23 | 24 | 1031 | | 29900 | 562
882 | 530
856 | 501
832 | 460
809 | 424
788 | 393
768 | 363
737 | 337
702 | 313
668 | 292
637 | 272
608 | 254
582 | 238
556 | 223
533 | 209
511 | | | | | | | | 596 | 559 | 528 | 500 | 474 | 439 | 406 | 378 | 351 | 326 | 304 | 285 | 266 | 249 | 234 | | 24LH11 | 25 | 24 | 1087 | | 31520 | 927
624 | 900
588 | 875
555 | 851
525 | 829
498 | 807
472 | 787
449 | 768
418 | 734
388 | 701
361 | 671
337 | 642
315 | 616
294 | 590
276 | 567
259 | | 28LH05 | 13 | 28 | < 34
415 | | 34-41
14120 | 42 337 | 43 | 310 | 45 297 | 46 286 | 47 275 | 48 265 | 49 255 | 50 245 | 51 237 | 52 228 | 53 | 54 213 | 55 | 56 | | | | | | | | 219 | 205 | 192 | 180 | 169 | 159 | 150 | 142 | 133 | 126 | 119 | 113 | 107 | 102 | 97 | | 28LH06 | 16 | 28 | 552 | | 18760 | 448
289 | 429
270 | 412
253 | 395
238 | 379
223 | 364
209 | 350
197 | 337
186 | 324
175 | 313
166 | 301
156 | 291
148 | 281
140 | 271
133 | 262
126 | | 28LH07 | 17 | 28 | 623 | | 21180 | 505
326 | 484
305 | 464
285 | 445
267 | 427
251 | 410
236 | 394
222 | 379
209 | 365
197 | 352
186 | 339
176 | 327
166 | 316
158 | 305
150 | 295
142 | | 28LH08 | 18 | 28 | 667 | | 22680 | 540
348 | 517
325 | 496
305 | 475
285 | 456
268 | 438
252 | 420
236 | 403
222 | 387
209 | 371
196 | 357
185 | 344
175 | 331
165 | 319
156 | 308
148 | | 28LH09 | 21 | 28 | 821 | | 27920 | 667
428 | 639
400 | 612
375 | 586
351 | 563
329 | 540
309 | 519
291 | 499
274 | 481
258 | 463
243 | 446
228 | 430
216 | 415
204 | 401
193 | 387
183 | | 28LH10 | 23 | 28 | 898 | | 30540 | 729 | 704 | 679 | 651 | 625 | 600 | 576 | 554 | 533 | 513 | 495 | 477 | 460 | 444 | 429 | | 28LH11 | 25 | 28 | 964 | | 32760 | 466
780 | 439
762 | 736 | 388
711 | 364
682 | 342
655 | 322
629 | 303
605 | 285
582 | 269
561 | 255
540 | 241
521 | 502 | 215
485 | 204
468 | | 28LH12 | 27 | 28 | 1058 | | 35980 | 498
857 | 475
837 | 448
818 | 423
800 | 397
782 | 373
766 | 351
737 | 331
709 | 312
682 | 294
656 | 278
632 | 263
609 | 249
587 | 236
566 | 223
546 | | 28LH13 | 30 | 28 | 1103 | | 37500 | 545
895 | 520
874 | 496
854 | 476
835 | 454
816 | 435
799 | 408
782 | 383
766 | 361
751 | 340
722 | 321
694 | 303
668 | 285
643 | 270
620 | 256
598 | | 201113 | 30 | 20 | 2000 1000 | | | 569 | 543 | 518 | 495 | 472 | 452 | 433 | 415 | 396 | 373 | 352 | 332 | 314 | 297 | 281 | | 32LH06 | 14 | 32 | < 39 431 | 39-46
16820 | 47-49
16820 | 338 | 51 | 52 315 | 53 | 54 294 | 55 284 | 56 275 | 57 266 | 58 257 | 59 249 | 60
242 | 61
234 | 62 227 | 63 220 | 64 214 | | 32LH07 | 16 | 32 | 485 | 18920 | 18920 | 379 | 366 | 353 | 179
341 | 329 | 161
318 | 308 | 145
298 | 138
288 | 279 | 125
271 | 119
262 | 114
254 | 108
247 | 104
240 | | 32LH08 | 17 | 32 | 527 | 20540 | 20540 | 235 | 397 | 383 | 369 | 189
357 | 179
345 | 170
333 | 162
322 | 154
312 | 302 | 140
293 | 133
284 | 127
275 | 121
267 | 116
259 | | 32LH09 | 21 | 32 | 661 | 25780 | 25780 | 255
516 | 242
498 | 229
480 | 216
463 | 205
447 | 194
432 | 184
418 | 175 | 167
391 | 159
379 | 151
367 | 144 | 137
345 | 131
335 | 125
325 | | | | | | | A | 319 | 302 | 285 | 270 | 256 | 243 | 230 | 219 | 208 | 198 | 189 | 180 | 172 | 164 | 157 | | 32LH10 | 21 | 32 | 731 | 28500 | 28500 | 571
352 | 550
332 | 531
315 | 512
297 | 495
282 | 478
267 | 462
254 | 445
240 | 430
228 | 416
217 | 402
206 | 389
196 | 376
186 | 364
178 | 353
169 | | 32LH11 | 24 | 32 | 801 | 31220 | 31220 | 625
385 | 602
363 | 580
343 | 560
325 | 541
308 | 522
292 | 505
277 | 488
263 | 473
251 | 458
239 | 443
227 | 429
216 | 416
206 | 403
196 | 390
187 | | 32LH12 | 27 | 32 | 939 | 36640 | 36640 | 734
450 | 712 | 688
406 | 664 | 641 | 619
345 | 598
327 | 578 | 559 | 541 | 524 | 508
255 | 492
243 | 477
232 | 463
221 | | 32LH13 | 30 | 32 | 1048 | 40880 | 40880 | 817 | 801 | 785 | 771 | 742 | 715 | 690 | 311
666 | 643 | 621 | 600 | 581 | 562 | 544 | 527 | | 32LH14 | 33 | 32 | 1079 | 42080 | 42080 | 500
843 | 480
826 | 461
810 | 795 | 780 | 397
766 | 376
738 | 354
713 | 336
688 | 319
665 | 304
643 | 622 | 602 | 262 583 | 249
564 | | 32LH15 | 35 | 32 | 1115 | 43500 | 43500 | 515
870 | 495
853 | 476
837 | 458
821 | 440
805 | 417
791 | 395
776 | 374
763 | 355
750 | 337
725 | 321
701 | 304
678 | 290
656 | 276
635 | 264
616 | | | | | | | | 532 | 511 | 492 | 473 | 454 | 438 | 422 | 407 | 393 | 374 | 355 | 338 | 322 | 306 | 292 | | 36LH07 | 16 | 36 | < 43 | 43-46
16900 | 47-56 57
16900 | 292 | 59 283 | 60
274 | 61 266 | 62 258 | 63 251 | 244 | 65 237 | 230 | 224 | 68 218 | 212 | 70 207 | 71 201 | 72 196 | | 36LH08 | 18 | 36 | 433 | 18600 | 18600 | 321 | 168
311 | 160
302 | 153
293 | 146
284 | 140
276 | 134
268 | 128
260 | 122
253 | 246 | 112
239 | 107
233 | 103
227 | 99
221 | 95
215 | | | | | | | | 194 | 185 | 176 | 168 | 160 | 153 | 146 | 140 | 134 | 128 | 123 | 118 | 113 | 109 | 104 | | 36LH09 | 21 | 36 | 554 | | 23840 | 411
247 | 398
235 | 386
224 | 374
214 | 363
204 | 352
195 | 342
186 | 333
179 | 323
171 | 314
163 | 306
157 | 297
150 | 289
144 | 282
138 | 275
133 | | 36LH10 | 21 | 36 | 611 | 26260 | 26260 | 454
273 | 440
260 | 426
248 | 413
236 | 401
225 | 389
215 | 378
206 | 367
197 | 357
188 | 347
180 | 338
173 | 328
165 | 320
159 | 311
152 | 303
146 | | 36LH11 | 23 | 36 | 667 | 28660 | 28660 | 495
297 | 480
283 | 465
269 | 451
257 | 438
246 | 425
234 | 412
224 | 401
214 | 389
205 | 378
196 | 368
188 | 358
180 | 348
173 | 339
166 | 330
159 | | 36LH12 | 25 | 36 | 798 | 34300 | 34300 | 593 | 575 | 557 | 540 | 523 | 508 | 493 | 478 | 464 | 450 | 437 | 424 | 412 | 400 | 389 | | 36LH13 | 30 | 36 | 938 | 40340 | 40340 | 354
697 | 338
675 | 322
654 | 307
634 | 292
615 | 279
596 | 267 579 | 255
562 | 243
546 | 531 | 516 | 502 | 204
488 | 195
475 | 187
463 | | 36LH14 | 36 | 36 | 1034 | 44460 | 44460 | 415
768 | 395
755 | 376
729 | 359
706 | 342
683 | 327
661 | 312
641 | 298
621 | 285
602 | 273
584 | 262
567 | 251
551 | 240
535 | 231
520 | 222
505 | | | | | | | 100000000000000000000000000000000000000 | 456 | 434 | 412 | 392 | 373 | 356 | 339 | 323 | 309 | 295 | 283 | 270 | 259 | 247 | 237 | | 36LH15 | 36 | 36 | 1090 | 46880 | 46880 | 809
480 | 795
464 | 781
448 | 769
434 | 744
413 | 721
394 | 698
375 | 677
358 | 656
342 | 637
327 | 618
312 | 600
299 | 583
286 | 567
274 | 551
263 | | | | Bas | | STANDA
a 50 ksi | | | | | | | | | | | | (plf) | | | | | |-----------------------|---------------------------
--------------|---|--------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------| | Joist | Approx. Wt | Depth | Max | SAFEI | _OAD* | | | | | | | | | | | W / | | | | | | Designation | in Lbs. Per
Linear Ft. | in
inches | Load
(plf) | | .bs.
veen | | | | | | | SPA | N IN F | EET | | | | | | | | | (Joists Only) | IIICIICS | < 48 | 48-59 | 60-65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 40LH08 | 16 | 40 | 348 | 16680 | 16680 | 254 | 247 | 241 | 234 | 228 | 222 | 217 | 211 | 206 | 201 | 196 | 192 | 187 | 183 | 17 | | 40LH09 | 21 | 40 | 457 | 21920 | 21920 | 150
332 | 144
323 | 138
315 | 132
306 | 127
298 | 122
291 | 117
283 | 112
276 | 108
269 | 104
263 | 100
256 | 97
250 | 93
244 | 90
239 | 23 | | CONTRACTOR CONTRACTOR | 800000 | - | | 10 - 10 - 30 - Alles / A | | 196 | 188 | 180 | 173 | 166 | 160 | 153 | 147 | 141 | 136 | 131 | 126 | 122 | 118 | 11 | | 40LH10 | 21 | 40 | 503 | 24120 | 24120 | 367
216 | 357
207 | 347
198 | 338
190 | 329
183 | 321
176 | 313
169 | 305
162 | 297
156 | 290
150 | 283
144 | 276
139 | 269
134 | 262
129 | 25
12 | | 40LH11 | 22 | 40 | 549 | 26340 | 26340 | 399 | 388 | 378 | 368 | 358 | 349 | 340 | 332 | 323 | 315 | 308 | 300 | 293 | 286 | 27 | | 40LH12 | 25 | 40 | 668 | 32060 | 32060 | 234
486 | 224
472 | 215
459 | 207
447 | 198
435 | 190
424 | 183
413 | 176
402 | 169
392 | 163
382 | 157
373 | 151
364 | 145
355 | 140
346 | 33 | | | | | | | | 285 | 273 | 261 | 251 | 241 | 231 | 222 | 213 | 205 | 197 | 189 | 182 | 176 | 169 | 16 | | 40LH13 | 30 | 40 | 788 | 37800 | 37800 | 573
334 | 557
320 | 542
307 | 528
295 | 514
283 | 500
271 | 487
260 | 475
250 | 463
241 | 451
231 | 440
223 | 429
214 | 419
207 | 409
199 | 39 | | 40LH14 | 35 | 40 | 900 | 43220 | 43220 | 656 | 638 | 620 | 603 | 587 | 571 | 556 | 542 | 528 | 515 | 502 | 490 | 478 | 466 | 45 | | | | | | | | 383 | 367 | 351 | 336 | 323 | 309 | 297 | 285 | 273 | 263 | 252 | 243 | 233 | 225 | 21 | | 40LH15 | 36 | 40 | 1007 | 48340 | 48340 | 734 | 712 | 691 | 671 | 652 | 633 | 616 | 599 | 583 | 567 | 552 | 538 | 524 | 511 | 49 | | 40LH16 | 42 | 40 | 1110 | 53280 | 53280 | 427
808 | 408
796 | 390
784 | 373
772 | 357
761 | 342
751 | 328
730 | 315
710 | 302
691 | 290
673 | 279
655 | 268
638 | 258
622 | 248
606 | 23
59 | | 4011110 | 72 | 40 | 1110 | 33200 | 33200 | 469 | 455 | 441 | 428 | 416 | 404 | 387 | 371 | 356 | 342 | 329 | 316 | 304 | 292 | 28 | | | | | < 53 | 53-59 | 60-73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | - 88 | | 44LH09 | 19 | 44 | 379 | 20100 | 20100 | 272 | 265 | 259 | 253 | 247
136 | 242 | 236 | 231 | 226 | 221 | 216 | 211 | 207 | 202 | 19 | | 44LH10 | 21 | 44 | 419 | 22200 | 22200 | 300 | 152
293 | 146
286 | 141
279 | 272 | 131
266 | 260 | 122
254 | 118
249 | 243 | 238 | 106
233 | 103
228 | 223 | 21 | | | | | | | | 174 | 168 | 162 | 155 | 150 | 144 | 139 | 134 | 130 | 125 | 121 | 117 | 113 | 110 | 10 | | 44LH11 | 22 | 44 | 453 | 24000 | 24000 | 325
188 | 317
181 | 310 | 302 | 295 | 289 | 282 | 276 | 269
140 | 264
136 | 258
131 | 252
127 | 247
123 | 242
119 | 23 | | 44LH12 | 25 | 44 | 561 | 29740 | 29740 | 402 | 393 | 175
383 | 168
374 | 162
365 | 157
356 | 151
347 | 146
339 | 331 | 323 | 315 | 308 | 300 | 293 | 11
28 | | | | | | | | 232 | 224 | 215 | 207 | 200 | 192 | 185 | 179 | 172 | 166 | 160 | 155 | 149 | 144 | 13 | | 44LH13 | 30 | 44 | 665 | 35260 | 35260 | 477
275 | 466
265 | 454
254 | 444
246 | 433
236 | 423
228 | 413
220 | 404
212 | 395
205 | 386
198 | 377
191 | 369
185 | 361
179 | 353
173 | 34 | | 44LH14 | 31 | 44 | 766 | 40580 | 40580 | 549 | 534 | 520 | 506 | 493 | 481 | 469 | 457 | 446 | 436 | 425 | 415 | 406 | 396 | 16
38 | | | - | | | | | 315 | 302 | 291 | 279 | 268 | 259 | 249 | 240 | 231 | 223 | 215 | 207 | 200 | 193 | 18 | | 44LH15 | 36 | 44 | 891 | 47220 | 47220 | 639 | 623 | 608 | 593 | 579 | 565 | 551 | 537 | 524 | 512 | 500 | 488 | 476 | 466 | 45 | | 44LH16 | 42 | 44 | 1027 | 54440 | 54440 | 366
737 | 352
719 | 339
701 | 326
684 | 314
668 | 303
652 | 292
637 | 622 | 608 | 261
594 | 252
580 | 243
568 | 234
555 | 543 | 53 | | 4461110 | 42 | 44 | 1027 | 34440 | 34440 | 421 | 405 | 390 | 375 | 362 | 348 | 336 | 324 | 313 | 302 | 291 | 282 | 272 | 263 | 25 | | 44LH17 | 47 | 44 | 1103 | 58460 | 58460 | 790 | 780 | 769 | 759 | 750 | 732 | 715 | 699 | 683 | 667 | 652 | 638 | 624 | 610 | - 59 | | | | | | | | 450 | 438 | 426 | 415 | 405 | 390 | 376 | 363 | 351 | 338 | 327 | 316 | 305 | 295 | 28 | | 4011140 | 24 | 48 | < 57 | 57-59 | 60-81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 90 | | 48LH10 | 21 | 40 | აⴢ∠ | 20080 | 20080 | 246
141 | 241
136 | 236
132 | 231
127 | 226
123 | 221
119 | 217
116 | 212
112 | 208
108 | 204
105 | 200
102 | 196
99 | 192
96 | 188
93 | 18
90 | | 48LH11 | 22 | 48 | 382 | 21780 | 21780 | 266 | 260 | 255 | 249 | 244 | 239 | 234 | 229 | 225 | 220 | 216 | 212 | 208 | 204 | 20 | | 48LH12 | 25 | 48 | 482 | 27500 | 27500 | 152
336 | 147
329 | 142
322 | 137
315 | 133
308 | 129
301 | 125
295 | 120
289 | 117
283 | 113
277 | 110
272 | 106
266 | 103
261 | 100
256 | 25 | | | 15-000 | 70 | 111111111111111111111111111111111111111 | | 9000 | 191 | 185 | 179 | 173 | 167 | 161 | 156 | 151 | 147 | 142 | 138 | 133 | 129 | 126 | 12 | | 48LH13 | 29 | 48 | 578 | 32940 | 32940 | 402
228 | 393
221 | 384
213 | 376
206 | 368
199 | 360
193 | 353
187 | 345
180 | 338
175 | 332
170 | 325
164 | 318
159 | 312
154 | 306
150 | 30
14 | | 48LH14 | 32 | 48 | 682 | 38860 | 38860 | 475 | 464 | 454 | 444 | 434 | 425 | 416 | 407 | 399 | 390 | 383 | 375 | 367 | 360 | 35 | | 4011145 | 00 | 40 | 704 | 14000 | 7.7000 | 269 | 260 | 251 | 243 | 234 | 227 | 220 | 212 | 206 | 199 | 193 | 187 | 181 | 176 | 17 | | 48LH15 | 36 | 48 | 784 | 44680 | 44680 | 545
308 | 533
298 | 521
287 | 510
278 | 499
269 | 488
260 | 478
252 | 468
244 | 458
236 | 448
228 | 439
221 | 430
214 | 422
208 | 413
201 | 40
19 | | 48LH16 | 42 | 48 | 904 | 51500 | 51500 | 629 | 615 | 601 | 588 | 576 | 563 | 551 | 540 | 528 | 518 | 507 | 497 | 487 | 477 | 46 | | 4011::= | | | 46:- | F70 :- | 20000 | 355 | 343 | 331 | 320 | 310 | 299 | 289 | 280 | 271 | 263 | 255 | 247 | 239 | 232 | 22 | | 48LH17 | 47 | 48 | 1015 | 57840 | 57840 | 706
397 | 690
383 | 675
371 | 660
358 | 646
346 | 632
335 | 619
324 | 606
314 | 593
304 | 581
294 | 569
285 | 558
276 | 547
268 | 536
260 | 52
25 | ## STANDARD LRFD LOAD TABLE ### **DEEP LONGSPAN STEEL JOISTS, DLH-SERIES** Based on a 50 ksi Maximum Yield Strength Spans up to and including 144 ft. adopted by the Steel Joist Institute May 1, 2000 Spans greater than 144 ft. up to and including 240 ft. adopted by the Steel Joist Institute May 18, 2010 Revised to May 18, 2010 – Effective December, 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD DLH**-Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the factored LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the unfactored, uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored, uniform load for supplementary deflection criteria (i.e. the unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard ASD Load Table for Deep Longspan Steel Joists, DLH-Series. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". Where the joist span is in the **GRAY SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until all rows of bridging are completely installed. The **GRAY SHADED** area starts after 100'–0" and extends up through 240'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j =
26.767(W)(L³)(10-6), where W= RED figure in the Load Table, and L = (span - 0.33) in feet. ``` Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe factored uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe factored uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for an unfactored RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the unfactored RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table - 0.33 feet)² and divide by (the actual span - 0.33 feet)². In no case shall the calculated unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as determined from the Standard ASD Load Table for Deep Longspan Steel Joists, DLH-Series. | _ | | | | | | | | I | 9 7 | | D | | | | | | | | | | |-------------|----------------------------|--------|-------------|--------|--------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | | D | | | | | LONGS | | | 7000 1000 | | | . /- 16 | | | | | | | Joist | Approx. Wt | Depth | Max | | LOAD* | 50 KSI IV | laximum | Yield S | trength - | Loads | snown in | Pounds | per Lin | ear Foot | : (ріт) | | | | | | | Designation | in Lbs. Per | in | Load | in L | Lbs. | | | | | | | SP | an in Fe | ET | | | | | | | | | Linear Ft
(Joists only) | inches | plf
< 62 | 62- | veen
!-89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | | 52DLH10 | 25 | 52 | 648 | 402 | 200 | 447
171 | 436
165 | 427
159 | 418
154 | 409
150 | 400
145 | 391
140 | 384
136 | 376
132 | 369
128 | 361
124 | 354
120 | 346
116 | 340
114 | 334
110 | | 52DLH11 | 26 | 52 | 712 | 441 | 130 | 490 | 480 | 469 | 459 | 448 | 439 | 430 | 421 | 412 | 405 | 396 | 388 | 381 | 373 | 366 | | 52DLH12 | 29 | 52 | 794 | 492 | 230 | 187
547 | 181
535 | 174
523 | 169
513 | 164
501 | 158
490 | 153
480 | 149
471 | 144
460 | 140
451 | 135
442 | 132
433 | 128
426 | 124
417 | 120
409 | | 52DLH13 | 34 | 52 | 964 | 59 | 760 | 204
664 | 197
649 | 191
636 | 185
621 | 179
609 | 173
595 | 168
583 | 163
571 | 158
559 | 153
549 | 149
537 | 144
526 | 140
516 | 135
507 | 132
496 | | 52DLH14 | 39 | 52 | 1103 | 683 | 370 | 247
760 | 239
745 | 231
729 | 224
714 | 216
699 | 209
685 | 203
670 | 197
657 | 191
645 | 185
631 | 180
619 | 174
607 | 170
595 | 164
585 | 159
573 | | | | | 1239 | | | 276 | 266 | 258 | 249 | 242 | 234 | 227 | 220 | 213 | 207 | 201 | 194 | 189 | 184 | 178 | | 52DLH15 | 42 | 52 | | | 800 | 853
311 | 835
301 | 817
291 | 799
282 | 783
272 | 766
264 | 750
256 | 735
247 | 720
240 | 705
233 | 691
226 | 676
219 | 664
213 | 651
207 | 639
201 | | 52DLH16 | 45 | 52 | 1335 | 828 | 800 | 921
346 | 901
335 | 882
324 | 862
314 | 844
304 | 826
294 | 810
285 | 792
276 | 777
267 | 760
260 | 745
252 | 730
245 | 717
237 | 702
230 | 688
224 | | 52DLH17 | 52 | 52 | 1537 | 953 | 310 | 1059
395 | 1036
381 | 1014
369 | 991
357 | 970
346 | 951
335 | 930
324 | 912
315 | 892
304 | 874
296 | 858
286 | 840
279 | 823
270 | 808
263 | 792
255 | | 50011144 | | | <67 | | -97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 56DLH11 | 26 | 56 | 631 | 0.000 | 300 | 432
169 | 424
163 | 415
158 | 408
153 | 400
149 | 393
145 | 385
140 | 379
136 | 372
133 | 366
129 | 358
125 | 352
122 | 346
118 | 340
115 | 334
113 | | 56DLH12 | 30 | 56 | 725 | 486 | 600 | 496
184 | 486
178 | 477
173 | 468
168 | 459
163 | 450
158 | 442
153 | 433
150 | 426
145 | 417
141 | 409
137 | 402
133 | 394
130 | 388
126 | 381
123 | | 56DLH13 | 34 | 56 | 879 | 588 | 860 | 601
223 | 591
216 | 579
209 | 568
204 | 558
197 | 547
191 | 537
186 | 526
181 | 516
175 | 507
171 | 496
166 | 487
161 | 478
157 | 471
152 | 462
149 | | 56DLH14 | 39 | 56 | 993 | 665 | 540 | 679
249 | 666
242 | 652
234 | 640
228 | 628
221 | 616
214 | 604
209 | 594
202 | 582
196 | 571
190 | 562
186 | 552
181 | 541
175 | 532
171 | 523
167 | | 56DLH15 | 42 | 56 | 1135 | 760 | 020 | 777
281 | 762
272 | 747
264 | 732
256 | 717
248 | 703
242 | 690 | 676 | 664 | 651
215 | 639 | 628
204 | 616
198 | 604
192 | 594
188 | | 56DLH16 | 46 | 56 | 1224 | 820 | 020 | 838
313 | 822
304 | 805
294 | 789
285 | 774
277 | 759
269 | 744
262 | 730
254 | 717 | 703
240 | 690
233 | 678
227 | 666
221 | 654
214 | 642
209 | | 56DLH17 | 51 | 56 | 1411 | 945 | 530 | 964 | 945 | 927 | 907 | 891 | 873 | 856 | 840 | 823 | 808 | 793 | 780 | 765 | 751 | 738 | | | | | < 71 | 71-99 | 100-105 | 356
106 | 345
107 | 335
108 | 325
109 | 316
110 | 306
111 | 298
112 | 289
113 | 281
114 | 273
115 | 266
116 | 258
117 | 251
118 | 245
119 | 238
120 | | 60DLH12 | 29 | 60 | 659 | 46800 | 46800 | 442
168 | 433
163 | 426
158 | 418
154 | 411
150 | 405
146 | 397
142 | 391
138 | 384
134 | 378
131 | 372
128 | 366
124 | 360
121 | 354
118 | 348
115 | | 60DLH13 | 35 | 60 | 801 | 56880 | 56880 | 537
203 | 526
197 | 517
191 | 508
187 | 499
181 | 490
176 | 483
171 | 474
167 | 466
163 | 459
158 | 451
154 | 444
151 | 436
147 | 429
143 | 423
139 | | 60DLH14 | 40 | 60 | 890 | 63210 | 63210 | 597
216 | 586
210 | 574
205 | 564
199 | 555
193 | 544
189 | 534
183 | 525
178 | 516
173 | 507
170 | 498
165 | 490
161 | 481
156 | 474
152 | 465
149 | | 60DLH15 | 43 | 60 | 1045 | 74190 | 74190 | 700
255 | 687
248 | 675
242 | 663
235 | 651
228 | 640
223 | 628
216 | 618
210 | 607
205 | 597
200 | 588
194 | 577
190 | 568
185 | 559
180 | 550
175 | | 60DLH16 | 46 | 60 | 1149 | 81570 | 81570 | 769
285 | 756
277 | 741
269 | 727
262 | 714 | 702
247 | 690
241 | 676
235 | 666
228 | 654
223 | 642
217 | 631
211 | 621
206 | 610
201 | 600
196 | | 60DLH17 | 52 | 60 | 1320 | 93750 | 93750 | 885
324 | 868
315 | 853
306 | 837
298 | 822
290 | 807
283 | 793
275 | 778
267 | 765
261 | 751
254 | 739
247 | 726
241 | 714
235 | 702
228 | 690
223 | | 60DLH18 | 59 | 60 | 1524 | 108180 | 108180 | 1021 | 1002 | 984 | 966 | 948 | 931 | 915 | 898 | 883
294 | 867 | 852 | 838 | 823 | 810
259 | 796
252 | | | | | <76 | 76-99 | 100-113 | 366
114 | 357
115 | 346
116 | 337
117 | 327
118 | 319
119 | 310
120 | 303
121 | 122 | 123 | 124 | 125 | 266
126 | 127 | 128 | | 64DLH12 | 31 | 64 | 594 | 45120 | 45120 | 396
153 | 388
150 | 382
146 | 376
142 | 370
138 | 364
135 | 358
132 | 352
129 | 346
125 | 342
122 | 336
119 | 331
116 | 327
114 | 321
111 | 316
109 | | 64DLH13 | 34 | 64 | 720 | 54750 | 54750 | 481
186 | 472
181 | 465
176 | 457
171 | 450
168 | 442
163 | 436
159 | 429
155 | 421
152 | 415
148 | 409
144 | 403
141 | 396
137 | 390
134 | 385
131 | | 64DLH14 | 40 | 64 | 825 | 62730 | 62730 | 550
199 | 540
193 | 531
189 | 523
184 | 514
179 | 505
174 | 498
171 | 489
166 | 481
162 | 474
158 | 466
154 | 459
151 | 451
147 | 444
143 | 438
140 | | 64DLH15 | 43 | 64 | 946 | 71910 | 71910 | 631 | 621
228 | 610
223 | 600
217 | 591
211 | 580
206 | 571
201 | 562
196 | 553
191 | 544
187 | 537
182 | 528
177 | 520
173 | 511
170 | 504
165 | | 64DLH16 | 46 | 64 | 1065 | 80940 | 80940 | 711
262 | 699
254 | 687
248 | 675
242 | 664
235 | 652
229 | 642
224 | 631
218 | 621
213 | 610
208 | 601
203 | 591
198 | 582
193 | 573
189 | 564
184 | | 64DLH17 | 52 | 64 | 1227 | 93270 | 93270 | 819
298 | 804 | 790
283 | 777
275 | 763
268 | 751
262 | 738 | 726
248 | 714
243 | 702
237 | 691
231 | 681
226 | 669
220 | 658
215 | 648
210 | | 64DLH18 | 59 | 64 | 1417 | 107700 | 107700 | 945 | 928 | 912 | 897 | 880 | 867 | 852 | 838 | 823 | 810 | 798 | 784 | 772 | 760 | 748 | | | | | < 81 | 81-99 | 100-121 | 122 | 123 | 320
124 | 311
125 | 304
126 | 296
127 | 288
128 | 282
129 | 130 | 267
131 | 132 | 133 | 134 | 135 | 237
136 | | 68DLH13 | 37 | 68 | 650 | 52650 | 52650 | 432
171 | 426
168 | 418
164 | 412
159 | 406
155 | 400
152 | 394
149 | 388
145 | 382
142 | 378
138 | 372
135 | 366
133 | 361
130 | 355
127 | 351
124 | | 68DLH14 | 40 | 68 | 749 | 60630 | 60630 | 498
184 | 490
179 | 483
175 | 475
171 | 468
167 | 462
163 | 454
159 | 448
155 | 441
152 | 435
148 | 429
145 | 421
141 | 415
138 | 409
135 | 403
133 | | 68DLH15 | 44 | 68 | 839 | 67980 | 67980 | 558
206 | 547
201 | 540
196 | 531
191 | 522
187 | 514
182 | 505
178 | 498
174 | 490
170 | 483
166 | 475
162 | 468
158 | 462
155 | 454
152 | 448
148 | | 68DLH16 | 49 | 68 | 995 | 80610 | 80610 | 661
242 | 649
236 | 640
230 | 630
225 | 619
219 | 610
214 | 600
209 | 591
204 | 582
199 | 573
195 |
564
190 | 556
186 | 547
182 | 540
178 | 531
174 | | 68DLH17 | 55 | 68 | 1121 | 90840 | 90840 | 745
275 | 733
268 | 721
262 | 711
256 | 700
249 | 690
244 | 679
238 | 669
232 | 658
228 | 649
222 | 640
217 | 630 | 621
208 | 612
203 | 604
198 | | 68DLH18 | 61 | 68 | 1298 | 105150 | 105150 | 862
311 | 849
304 | 835
297 | 823
289 | 810
283 | 798
276 | 786
269 | 774
263 | 762
257 | 751
251 | 739
246 | 729
240 | 718
234 | 708
230 | 697
225 | | 68DLH19 | 67 | 68 | 1495 | 121080 | 121080 | 993 | 976 | 961 | 946 | 931 | 916 | 901 | 888 | 874 | 861 | 847 | 835 | 822 | 810 | 798 | | | | | < 85 | 85-99 | 100-129 | 353
130 | 131 | 336
132 | 133 | 320
134 | 318
135 | 305
136 | 298
137 | 291
138 | 139 | 278
140 | 272
141 | 142 | 143 | 254
144 | | 72DLH14 | 41 | 72 | 694 | 58950 | 58950 | 454
171 | 447
167 | 441
163 | 435
159 | 427
155 | 421
152 | 415
149 | 411
146 | 405
143 | 399
139 | 393
136 | 388
133 | 382
131 | 378
128 | 372
125 | | 72DLH15 | 44 | 72 | 794 | 67530 | 67530 | 520
191 | 513
187 | 504
183 | 496
178 | 489
174 | 483
171 | 475
167 | 468
163 | 462
160 | 454
156 | 448
152 | 442
150 | 436
147 | 429
143 | 423
140 | | 72DLH16 | 50 | 72 | 918 | 78060 | 78060 | 601
225 | 592
219 | 585
214 | 576
209 | 567
205 | 559
200 | 552
196 | 544
191 | 537
188 | 529
183 | 522
179 | 514
175 | 507
171 | 501
169 | 493
165 | | 72DLH17 | 56 | 72 | 1033 | 87810 | 87810 | 676
256 | 667
250 | 657
245 | 648
239 | 639
233 | 630
228 | 621
224 | 612
218 | 603
213 | 595
209 | 586
205 | 579
200 | 571
196 | 564
191 | 556
188 | | 72DLH18 | 59 | 72 | 1210 | 102870 | 102870 | 792
289 | 780
283 | 768
276 | 757
270 | 745
265 | 735
258 | 724
252 | 718
247 | 705
242 | 694
236 | 685
231 | 675
227 | 666
222 | 657
217 | 648
212 | #### LRED | | | | | | | | | | R | 3) | | | | | | | | | | | | |---|------------------------|----------|-------------|-------------------|----------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------| | | | | | | ANDARD I | | | | | | | - 0 | | | | | | | | | | | Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) Joist Approx. Wt Depth Max SAFE LOAD* | Designation | Approx. Wt in Lbs. Per | Depth | Max
Load | | LOAD* | SPAN IN FEET | | | | | | | | | | | | | | | | | | Linear Ft | inches | (plf) | | tween | | | | | | | | | | | | | | | | | | 00011145 | (Joists only) | 00 | < 81 | 81-99 | 100-111 | 112 | 115 | 118 | 121 | 124 | 127 | 130 | 133 | 136 | 139 | 142 | 145 | 148 | 151 | 155 | 160 | | 80DLH15 | 40 | 80 | 966 | 78240 | 78240 | 699
321 | 663
296 | 632
275 | 602 | 575
236 | 549
220 | 525
205 | 503
192 | 482
179 | 461
167 | 443
157 | 425
147 | 408
139 | 392
130 | 371
120 | 347
109 | | 80DLH16 | 46 | 80 | 1161 | 94020 | 94020 | 840 | 802 | 763 | 727 | 691 | 658 | 628 | 600 | 574 | 549 | 525 | 504 | 483 | 463 | 439 | 411 | | 80DLH17 | 53 | 80 | 1341 | 108630 | 108630 | 971 | 926 | 321
881 | 297
839 | 276
800 | 257
765 | 731 | 699 | 209
669 | 196
641 | 184
615 | 172
590 | 162
567 | 152
545 | 141
517 | 128
485 | | | | | | | | 451 | 416 | 386 | 358 | 332 | 309 | 288 | 269 | 252 | 235 | 221 | 207 | 195 | 183 | 169 | 154 | | 80DLH18 | 60 | 80 | 1518 | 122760 | 122760 | 1097
516 | 1044
477 | 993
441 | 947 | 903 | 863
354 | 825
330 | 789
308 | 756
288 | 723
270 | 695
253 | 666
237 | 641
223 | 615
210 | 584
194 | 548
176 | | 80DLH19 | 67 | 80 | 1768 | 143220 | 143220 | 1280 | 1218 | 1160 | 1104 | 1052 | 1005 | 960 | 918 | 878 | 840 | 806 | 774 | 743 | 714 | 677 | 635 | | 80DLH20 | 75 | 80 | 1987 | 160980 | 160980 | 578
1446 | 533
1382 | 493
1323 | 458
1268 | 425
1211 | 396
1157 | 369
1104 | 344
1056 | 322
1011 | 301
968 | 283
927 | 266
891 | 250
855 | 235
821 | 217
780 | 197
731 | | | | | < 89 | 89-99 | 100-120 | 646
121 | 596
124 | 552
127 | 512
130 | 475
133 | 443
136 | 412
139 | 385
142 | 360
145 | 337
148 | 316
151 | 297
155 | 279
160 | 263
165 | 243
170 | 220
175 | | 88DLH16 | 46 | 88 | 1048 | 93270 | 93270 | 771 | 735 | 701 | 671 | 642 | 615 | 591 | 567 | 545 | 524 | 503 | 477 | 448 | 422 | 398 | 376 | | 20011147 | | | 4405 | 105150 | 105150 | 361 | 336 | 313 | 291 | 272 | 254 | 238 | 223 | 210 | 197 | 186 | 172 | 156 | 143 | 130 | 119 | | 88DLH17 | 51 | 88 | 1185 | 105450 | 105450 | 871
404 | 830
375 | 789
349 | 753
325 | 719
304 | 687
284 | 659
266 | 630
249 | 605
234 | 579
220 | 557
207 | 528
191 | 495
173 | 465
159 | 437
146 | 412
133 | | 88DLH18 | 58 | 88 | 1359 | 120930 | 120930 | 1001 | 953
427 | 908
397 | 866
370 | 827
346 | 791
323 | 756
303 | 725
284 | 695
267 | 666
250 | 639
236 | 607
218 | 569
199 | 535
181 | 503
165 | 474
152 | | 88DLH19 | 65 | 88 | 1572 | 139890 | 139890 | 460
1157 | 1101 | 1049 | 999 | 954 | 912 | 873 | 836 | 801 | 770 | 738 | 701 | 657 | 617 | 580 | 547 | | 88DLH20 | 76 | 88 | 1808 | 160950 | 160950 | 521
1334 | 484
1281 | 450
1232 | 420
1184 | 392
1133 | 367
1085 | 343
1041 | 322
998 | 302
959 | 284
921 | 267
885 | 248
841 | 225
790 | 205
743 | 187
700 | 172
660 | | 00DLH20 | 70 | 00 | 1000 | 100930 | 100930 | 623 | 579 | 539 | 502 | 469 | 438 | 410 | 385 | 361 | 340 | 320 | 296 | 269 | 246 | 224 | 206 | | 88DLH21 | 89 | 88 | 2231 | 198540 | 198540 | 1649
724 | 1568
673 | 1494
626 | 1425
584 | 1361
545 | 1301
509 | 1244
477 | 1191
447 | 1143
420 | 1097
395 | 1053
372 | 999
344 | 936
313 | 880
285 | 827
261 | 779
239 | | | | | < 97 | 97-99 | 100-129 | 130 | 133 | 136 | 139 | 142 | 145 | 148 | 151 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | | 96DLH17 | 52 | 96 | 1085 | 105270 | 105270 | 810 | 776 | 744 | 711 | 684 | 657 | 632 | 608 | 578
229 | 542 | 509 | 480 | 452 | 427 | 404 | 382 | | 96DLH18 | 58 | 96 | 1222 | 118500 | 118500 | 912 | 363
875 | 839 | 803 | 770 | 740 | 713 | 686 | 653 | 615 | 190
579 | 173
546 | 159
516 | 146
488 | 134
463 | 438 | | 96DLH19 | 66 | 96 | 1460 | 141660 | 141660 | 443
1091 | 413
1046 | 386
1001 | 362
957 | 917 | 319
878 | 300
842 | 809 | 768 | 720 | 216
676 | 198
636 | 181
601 | 166
566 | 153
536 | 141
507 | | 96DLH20 | 74 | 96 | 1644 | 159420 | 159420 | 502
1236 | 469
1184 | 438
1131 | 1083 | 385
1037 | 361
993 | 340
952 | 320
915 | 296
868 | 269
815 | 246
766 | 721 | 206
680 | 189
642 | 174
607 | 161
574 | | 90DL1120 | | 90 | 1044 | 139420 | 138420 | 569 | 531 | 496 | 465 | 436 | 409 | 385 | 362 | 336 | 305 | 277 | 254 | 233 | 214 | 196 | 181 | | 96DLH21 | 90 | 96 | 2062 | 200010 | 200010 | 1541
698 | 1473
652 | 1410
610 | 1350
571 | 1296
535 | 1243
503 | 1196
473 | 1149
445 | 1093
412 | 1026
374 | 965
341 | 908
312 | 856
286 | 809
263 | 765
242 | 724
224 | | 96DLH22 | 102 | 96 | 2310 | 224070 | 224070 | 1725 | 1662 | 1601 | 1542 | 1487 | 1436 | 1382 | 1329 | 1264 | 1188 | 1118 | 1054 | 995 | 941 | 890 | 843 | | | | | < 105 | 104 | 5-138 | 139 | 757
142 | 708
145 | 663
148 | 622
151 | 584
155 | 549
160 | 517
165 | 479
170 | 435
175 | 396
180 | 362
185 | 332
190 | 305
195 | 281
200 | 259
205 | | 104DLH18 | 59 | 104 | 1100 | 115470 | | 831 | 798 | 768 | 734 | 708 | 674 | 635 | 601 | 568 | 537 | 508 | 482 | 458 | 435 | 414 | 394 | | 104DLH19 | 67 | 104 | 1337 | 140420 | | 426
1011 | 400
971 | 375
933 | 353
897 | 332
861 | 307
819 | 279
770 | 255
727 | 233
686 | 213
648 | 195
613 | 180
581 | 167
552 | 154
524 | 142
497 | 132
473 | | 104DLH19 | 07 | 104 | 1337 | 14 | 140430 | | 453 | 426 | 401 | 377 | 349 | 317 | 289 | 265 | 242 | 222 | 204 | 189 | 175 | 162 | 150 | | 104DLH20 | 75 | 104 | 1504 | 15 | 7890 | 1146
548 | 1107
513 | 1071
483 | 1032
453 | 992
427 | 944
395 | 886
359 | 833
327 | 784
299 | 739
274 | 698
251 | 660
232 | 626
214 | 593
198 | 563
184 | 535
170 | | 104DLH21 | 90 | 104 | 1890 | 198480 | | 1434 | 1376 | 1322 | 1271 | 1220 | 1160 | 1091 | 1028 | 970 | 917 | 866 | 821 | 779 | 740 | 703 | 668 | | 104DLH22 | 104 | 104 | 2119 | 222540 | | 673
1607 | 632
1551 | 593
1499 | 558
1449 | 525
1401 | 486
1340 | 442
1261 | 403
1189 | 368
1121 | 337
1059 | 307
1001 | 284
949 | 263
901 | 244
855 | 226
812 | 209
774 | | 1000000000 100000 40 | 104 | 104 | 2110 | | 2040 | 783 | 734 | 689 | 648 | 610 | 564 | 513 | 468 | 428 | 392 | 359 | 331 | 306 | 283 | 262 | 244 | | 104DLH23 | 109 | 104 | 2334 | 245100
113-147 | | 1772
819 | 1712
768 | 1644
721 | 1578
678 | 1514
638 | 1437
590 | 1348
536 | 1267
489 | 1192
447 | 1125
410 | 1062
377 | 1004
347 | 952
320 | 902 | 857
274 | 814
254 | | | | | < 113 | | | 148 | 151 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | | 112DLH19 | 67 | 112 | 1223 | 138150 | | 935
466 | 900
439 | 857
406 | 805
369 | 759
336 | 716
308 |
677
281 | 643
259 | 610
238 | 579
220 | 549
203 | 523
189 | 498
175 | 476
162 | 454
151 | 433
142 | | 112DLH20 | 76 | 112 | 1384 | 15 | 156360 | | 1032 | 985 | 927 | 873 | 824 | 780 | 740 | 702 | 667 | 632 | 603 | 574 | 547 | 522 | 500 | | 112DLH21 | 91 | 112 | 1743 | 196950 | | 528
1337 | 497
1287 | 459
1223 | 418
1150 | 381
1083 | 348
1022 | 319
966 | 293
915 | 270
867 | 249
823 | 231
782 | 213
744 | 198
709 | 184
676 | 171
645 | 160
616 | | | | | | | | 650
1499 | 612 | 566 | 514 | 469 | 429 | 393 | 361 | 333 | 306 | 283 | 263 | 244 | 227 | 211 | 198 | | 112DLH22 | 104 | 112 | 1956 | 22 | 221010 | | 1451
711 | 1392
657 | 1321
598 | 1250
545 | 1181
498 | 1117
457 | 1057
419 | 1002
386 | 952
356 | 904
329 | 860
306 | 820
283 | 782
264 | 745
246 | 712
229 | | 112DLH23 | 110 | 112 | 2155 | 24 | 243540 | | 1601 | 1535 | 1454 | 1369 | 1288
522 | 1214 | 1147
439 | 1086 | 1030 | 977 | 928 | 882 | 839 | 800 | 763
239 | | 112DLH24 | 131 | 112 | 2555 | 286660 | | 790
1956 | 744
1895 | 688
1818 | 625
1727 | 571
1631 | 1539 | 478
1455 | 1379 | 1307 | 373
1241 | 345
1179 | 320
1123 | 297
1070 | 276
1019 | 972 | 928 | | | | | < 121 | 121-165 | | 957
166 | 901
170 | 834
175 | 758
180 | 691
185 | 632
190 | 579
195 | 532
200 | 489
205 | 451
210 | 418
215 | 387
220 | 359
225 | 334
230 | 311
235 | 291
240 | | 120DLH20 | 77 | 120 | 1229 | 121-165
148650 | | 896 | 856 | 808 | 766 | 726 | 691 | 658 | 627 | 598 | 570 | 544 | 521 | 498 | 477 | 457 | 439 | | 120DLH21 | 92 | 120 | 1528 | 184860 | | 430
1122 | 400
1072 | 367
1012 | 338
959 | 311
908 | 287
864 | 265
821 | 782 | 228
745 | 212
710 | 198
678 | 185
648 | 172
620 | 161
593 | 151
569 | 142
545 | | 199000000 1990000 | 5-001-10 | 30311500 | | | | 530 | 494 | 452 | 416 | 383 | 353 | 326 | 303 | 281 | 262 | 244 | 227 | 212 | 199 | 186 | 173 | | 120DLH22 | 104 | 120 | 1751 | 211920 | | 1283
616 | 1235
574 | 1169
526 | 1106
483 | 1049
445 | 997
411 | 949
380 | 903
352 | 860
327 | 821
304 | 783
283 | 749
265 | 716
247 | 686
231 | 657
217 | 629
204 | | 120DLH23 | 111 | 120 | 1938 | 23 | 234480 | | 1361 | 1287 | 1219 | 1157 | 1099 | 1046 | 995 | 948 | 903 | 862 | 822 | 786 | 751 | 719 | 689 | | 120DLH24 | 132 | 120 | 2298 | 27 | 8070 | 1676 | 1610 | 551
1522 | 506
1441 | 466
1367 | 430
1300 | 397
1237 | 369
1177 | 341
1122 | 318
1070 | 296
1022 | 977 | 258
934 | 241
894 | 857 | 213
821 | | 120DLH25 | 152 | 120 | 2633 | 318630 | | 781
1926 | 728
1847 | 667
1748 | 613
1656 | 565
1571 | 521
1492 | 482
1418 | 1350 | 414
1287 | 386
1228 | 359
1173 | 335
1122 | 313
1073 | 293
1026 | 275
983 | 258
943 | | arrenament transmis. | 100000000 | 70000000 | | | | 915 | 853 | 782 | 718 | 661 | 610 | 564 | 523 | 485 | 452 | 421 | 393 | 367 | 344 | 322 | 302 | ## Notes: ## STANDARD ASD LOAD TABLE #### **DEEP LONGSPAN STEEL JOISTS, DLH-SERIES** Based on a 50 ksi Maximum Yield Strength Spans up to and including 144 ft. adopted by the Steel Joist Institute May 25, 1983 Spans greater than 144 ft. up to and including 240 ft. adopted by the Steel Joist Institute May 18, 2010 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD DLH-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". Where the joist span is in the **GRAY SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until all rows of bridging are completely installed. The **GRAY SHADED** area starts after 100'-0" and extends up through 240'-0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j = 26.767(W)(L^3)(10^{-6}), where W= RED figure in the Load Table, and L = (span - 0.33) in feet. ``` Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for a RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table - 0.33 feet)² and divide by (the actual span - 0.33 feet)². In no case shall the calculated load exceed the TOTAL load-carrying capacity of the joist. | ASD |--|---------------|--------|---------|------------|--------------|--|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, DLH-SERIES | Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) | Joist | Approx. Wt | Depth | Max | SAFE LOAD* | | | | | | | | | | | | | | | | | Designation | in Lbs. Per | in | Load | in Lbs. | SPAN IN FEET | | | | | | | | | | | | | | | | | Linear Ft | inches | plf | Between | | 00 04 00 00 00 00 00 00 00 00 00 00 00 0 | | | | | | | | | | | | | | | | (Joists only) | | < 62 | 62-89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | | 52DLH10 | 25 | 52 | 432 | 26800 | 298 | 291 | 285 | 279 | 273 | 267 | 261 | 256 | 251 | 246 | 241 | 236 | 231 | 227 | 223 | | | 77:0 | 1000 | N880000 | | 171 | 165 | 159 | 154 | 150 | 145 | 140 | 136 | 132 | 128 | 124 | 120 | 116 | 114 | 110 | | 52DLH11 | 26 | 52 | 475 | 29420 | 327
187 | 320
181 | 313
174 | 306 | 299 | 293 | 287
153 | 281
149 | 275 | 270 | 264 | 259 | 254
128 | 249 | 244 | | 52DLH12 | 29 | 52 | 529 | 32820 | 365 | 357 | 349 | 169
342 | 164
334 | 158
327 | 320 | 314 | 307 | 140
301 | 135
295 | 132
289 | 284 | 124
278 | 120
273 | | 52DLH12 | 29 | 52 | 529 | 32820 | 204 | 197 | 191 | 185 | 179 | 173 | 168 | 163 | 158 | 153 | 149 | 144 | 140 | 135 | 132 | | 52DLH13 | 34 | 52 | 643 | 39840 | 443 | 433 | 424 | 414 | 406 | 397 | 389 | 381 | 373 | 366 | 358 | 351 | 344 | 338 | 331 | | GEDEITIG | | J. | 040 | 00040 | 247 | 239 | 231 | 224 | 216 | 209 | 203 | 197 | 191 | 185 | 180 | 174 | 170 | 164 | 159 | | 52DLH14 | 39 | 52 | 735 | 45580 | 507 | 497 | 486 | 476 | 466 | 457 | 447 | 438 | 430 | 421 | 413 | 405 | 397 | 390 | 382 | | | | | | | 276 | 266 | 258 | 249 | 242 | 234 | 227 | 220 | 213 | 207 | 201 | 194 | 189 | 184 | 178 | | 52DLH15 | 42 | 52 | 826 | 51200 | 569 | 557 | 545 | 533 | 522 | 511 | 500 | 490 | 480 | 470 | 461 | 451 | 443 | 434 | 426 | | | | | | | 311 | 301 | 291 | 282 | 272 | 264 | 256 | 247 | 240 | 233 | 226 | 219 | 213 | 207 | 201 | | 52DLH16 | 45 | 52 | 890 | 55200 | 614 | 601 | 588 | 575 | 563 | 551 | 540 | 528 | 518 | 507 | 497 | 487 | 478 | 468 | 459 | | | | | | | 346 | 335 | 324 | 314 | 304 | 294 | 285 | 276 | 267 | 260 | 252 | 245 | 237 | 230 | 224 | | 52DLH17 | 52 | 52 | 1025 | 63540 | 706
395 | 691
381 | 676
369 | 661
357 | 647
346 | 634
335 | 620
324 | 608
315 | 595
304 | 583
296 | 572
286 | 560
279 | 549
270 | 539
263 | 528
255 | | | | | <67 | 67-97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 56DLH11 | 26 | 56 | 421 | 28200 | 288 | 283 | 277 | 272 | 267 | 262 | 257 | 253 | 248 | 244 | 239 | 235 | 231 | 227 | 223 | | JODEITTI | 20 | 30 | 421 | 20200 | 169 | 163 | 158 | 153 | 149 | 145 | 140 | 136 | 133 | 129 | 125 | 122 | 118 | 115 | 113 | | 56DLH12 | 30 | 56 | 484 | 32400 | 331 | 324 |
318 | 312 | 306 | 300 | 295 | 289 | 284 | 278 | 273 | 268 | 263 | 259 | 254 | | | | | | | 184 | 178 | 173 | 168 | 163 | 158 | 153 | 150 | 145 | 141 | 137 | 133 | 130 | 126 | 123 | | 56DLH13 | 34 | 56 | 586 | 39240 | 401 | 394 | 386 | 379 | 372 | 365 | 358 | 351 | 344 | 338 | 331 | 325 | 319 | 314 | 308 | | | | | | | 223 | 216 | 209 | 204 | 197 | 191 | 186 | 181 | 175 | 171 | 166 | 161 | 157 | 152 | 149 | | 56DLH14 | 39 | 56 | 662 | 44360 | 453 | 444 | 435 | 427 | 419 | 411 | 403 | 396 | 388 | 381 | 375 | 368 | 361 | 355 | 349 | | 56DLH15 | 42 | 56 | 756 | 50680 | 249
518 | 242
508 | 234
498 | 228
488 | 221
478 | 214
469 | 209
460 | 202
451 | 196
443 | 190
434 | 186
426 | 181
419 | 175
411 | 171
403 | 167
396 | | JODENIS | 42 | 50 | 130 | 30000 | 510 | 500 | 490 | 400 | 4/0 | 409 | 400 | 431 | 443 | +34 | 420 | 419 | 411 | 403 | 390 |